Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Curr Pharm Des ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39136516

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a common diabetes complication with limited medications. Gegen Qinlian decoction (GQD) has been used in the treatment of diabetes and its related complications in China for several decades. OBJECTIVE: In this study, network pharmacology was employed to predict the active ingredients, key targets, and pathways involved in the treatment of DCM by GQD and to validate it by animal experiments. METHODS: The active ingredients of GQD were retrieved from TCMSP and published literature. DCM-related gene targets were searched in Drugbank, Genecards, Disgenet, and OMIM disease databases. Protein-protein interaction networks were constructed using the STRING database and Cytoscape. GO analysis and KEGG pathway enrichment analysis were performed using the Metascape platform. Moreover, a diabetic mouse model was established to evaluate the therapeutic effects of GQD by measuring serum biochemical markers and inflammation levels. Finally, the expression of predicted key target genes was determined using real-time quantitative PCR. RESULTS: A total of 129 active ingredients were screened from GQD. Moreover, 146 intersecting genes related to DCM were obtained, with key targets, including AKT1, TNF, IL6, and VEGFA. Lipid and atherosclerosis, AGE-RAGE, PI3K-AKT, and MAPK pathways were identified. Blood glucose control, decreased inflammatory factors, and serum CK-MB levels were restored after GQD intervention, and the same occurred with the expressions of PPAR-γ, AKT1, APOB, and GSK3B genes. CONCLUSION: Quercetin, kaempferol, wogonin, 7-methoxy-2-methyl isoflavone, and formononetin may exert major therapeutic effects by regulating key factors, such as AKT1, APOE, and GSK3B, in the inflammatory reaction, glycolipid oxidation, and glycogen synthesis related signaling pathways.

2.
Environ Pollut ; 360: 124678, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111528

RESUMEN

Nanomaterial-cellular membrane interaction is crucial for the cytotoxicity of such materials in theoretical investigations. However, previous research often used cellular membrane models with one or few lipid types, which deviates significantly from realistic membrane compositions. Here, employing molecular dynamics (MD) simulations, we investigate the impact of a typical nanomaterial, boron nitride (BN), on a cellular membrane model based on the realistic small intestinal epithelial cell (SIEC) membrane. This membrane contains a complex composition, including abundant glycolipids. Our MD simulations reveal that BN nanosheet can partially insert into the SIEC membrane, maintaining a stable binding conformation without causing obvious structural changes. Dynamic analyses suggest that van der Waals (vdW) interactions drive the binding process between BN and the SIEC membrane. Further simulation of the interaction between BN nanosheet and deglycosylated SIEC membrane confirms that BN nanosheet cause significant structural damage to deglycosylated SIEC membranes, completely inserting into the membrane, extracting lipids, and burying some lipid hydrophilic heads within the membrane interior. Quantitative analyses of mean squared displacements (MSD) of membranes, membrane thicknesses, area per lipid, and order parameters indicate that BN nanosheet causes more substantial damage to deglycosylated SIEC membrane than to intact SIEC membrane. This comparison suggests the molecular mechanism involved in mitigating BN invasion by SIEC membrane that the polysaccharide heads of glycolipids in the SIEC membrane form a significant steric hindrance on membrane surface, not only hindering the insertion of BN, but also resisting the lipid extraction by BN. Free energy calculations further support this conclusion. Overall, our MD simulations not only shed new light into the reduced impact of BN nanosheet on the realistic SIEC membrane but also highlight the importance of glycolipids in protecting cell membranes from nanomaterial invasion, contributing to a deeper understanding of nanomaterial-realistic cell membrane interactions.

3.
Biomed Pharmacother ; 177: 117040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959605

RESUMEN

Invariant natural killer T cell (iNKT) cells produce large amounts of cytokines in response to α-Galactosylceramide (α-GalCer) stimulation. An analog containing two phenyl rings on the acyl chain, C34, was previously found to be more Th1-biased than α-GalCer and triggered greater anticancer activities against breast cancer, melanoma and lung cancer in mice. Since liver is enriched in iNKT cells, we investigated anticancer efficacy of C34 on neuroblastoma with hepatic metastasis. C34 induced Th1-biased cytokine secretions in the liver, significantly suppressed neuroblastoma growth/metastasis and prolonged mouse survival. The anti-tumor efficacy might be attributed to greater expansions of hepatic NKT, NK, CD4+ T, and CD8+ T cells as well as reduction of the number of SSCloGr1intCD11b+ subset of myeloid-derived suppressor cells (MDSCs) in the liver of tumor-bearing mice, as compared to DMSO control group. C34 also upregulated expression of CD1d and CD11c, especially in the SSCloGr1intCD11b+ subset of MDSCs, which might be killed by C34-activated NKT cells, attributing to their reduced number. In addition, C34 also induced expansion of CD4+ T, CD8+ T, and NK cells, which might eliminate neuroblastoma cells. These immune-modulating effects of C34 might act in concert in the local milieu of liver to suppress the tumor growth. Further analysis of database of neuroblastoma revealed that patients with high CD11c expression in the monocytic MDSCs in the tumor had longer survival, suggesting the potential clinical application of C34 for treatment of neuroblastoma.


Asunto(s)
Glucolípidos , Neoplasias Hepáticas , Células T Asesinas Naturales , Neuroblastoma , Animales , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/inmunología , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Línea Celular Tumoral , Ratones , Glucolípidos/farmacología , Humanos , Femenino , Citocinas/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Antineoplásicos/farmacología , Galactosilceramidas/farmacología
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(7): 387-413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085064

RESUMEN

Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.


Asunto(s)
Escherichia coli , Glucolípidos , Proteínas de la Membrana , Glucolípidos/metabolismo , Glucolípidos/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Membrana Celular/metabolismo , Diglicéridos/metabolismo , Diglicéridos/química
5.
Int J Biol Macromol ; 276(Pt 2): 133773, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992554

RESUMEN

This study provided evidence that the inclusion of hydrolysable tannin (HT) in high soybean meal (SBM) diets improved growth performance and glycolipid metabolism of largemouth bass (Micropterus salmoides). In vivo, various levels of HT were added to high SBM diets and fed to largemouth bass (initial weight: 6.00 ± 0.03 g) for 56 days. Results showed that a high level of SBM led to the reduction in growth performance, as evidenced by decreased weight gain rate and impaired hepatic function. Dietary supplementation with HT (1.0 g/kg) improved growth performance of largemouth bass, accompanied by the enhancements in hepatic antioxidant capacity and glycolipid metabolism. In vitro, HT facilitated glucose utilization in hepatocytes and positively influenced the modulation of crucial genes within the PI3K/Akt signaling pathway. Conversely, administration of LY294002 (a PI3K inhibitor) reversed the detrimental effects observed in hepatocytes exposed to high glucose levels. Overall, incorporating HT (1.0 g/kg) into the diet enhanced liver health and improved the absorption and utilization of SBM in largemouth bass, potentially achieved through modulation of the PI3K/Akt signaling pathway.


Asunto(s)
Lubina , Glycine max , Hígado , Taninos , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Glycine max/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Taninos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Alimentación Animal , Suplementos Dietéticos , Antioxidantes/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Dieta , Glucosa/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Sci Rep ; 14(1): 16834, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039118

RESUMEN

Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) are named ADME genes. However, the comprehensive role of ADME genes in kidney renal clear cell carcinoma (KIRC) remains unclear. Using the clinical and gene expression data of KIRC patients downloaded from The Cancer Genome Atlas (TCGA), ArrayExpress, and the Gene Expression Omnibus (GEO) databases, we cluster patients into two patterns, and the population with a relatively poor prognosis demonstrated higher level of immunosuppressive cell infiltration and higher proportion of glycolytic subtypes. Then, 17 ADME genes combination identified through the least absolute shrinkage and selection operator algorithm (LASSO, 1000 times) was utilized to calculate the ADME score. The ADME score was found to be an independent predictor of prognosis in KIRC and to be tightly associated with the infiltration level of immune cells, metabolic properties, tumor-related signaling pathways, genetic variation, and responses to chemotherapeutics. Our work revealed the characteristics of ADME in KIRC. Assessing the ADME profiles of individual patients can deepen our comprehension of tumor microenvironment (TME) features in KIRC and can aid in developing more personalized and effective therapeutic strategies.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Microambiente Tumoral/genética , Pronóstico , Perfilación de la Expresión Génica , Antineoplásicos/farmacocinética , Femenino , Masculino
7.
J Bacteriol ; 206(7): e0018724, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-38953643

RESUMEN

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing in vivo during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms. IMPORTANCE: We show that Staphylococcus aureus can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of S. aureus in the food environment.


Asunto(s)
Adaptación Fisiológica , Frío , Ácidos Grasos Insaturados , Lipidómica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Ácidos Grasos Insaturados/metabolismo , Fluidez de la Membrana , Xantófilas/metabolismo , Lípidos de la Membrana/metabolismo
8.
Ecotoxicol Environ Saf ; 281: 116653, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964066

RESUMEN

Nitrite is the most common nitrogen-containing compound in nature. It is widely used in food processing like in pickled foods so it has caused widespread public concern about the safety of nitrites due to the formation of nitrosamine, a carcinogen, during the food process. Recent research has shown nitrite has therapeutic potential for cardiovascular disease due to its similar function to NO, yet the safety of oral nitrite and the physiological and biochemical responses induced after oral administration still require further validation. In addition, the relationship between nitrite and glycolipid metabolism still needs to be elucidated. As aquatic animals, fish are more susceptible to nitrite compared to mammals. Herein, we utilized tilapia (Oreochromis niloticus) as an animal model to explore the relationship between nitrite and glycolipid metabolism in organisms. In the present study, we found that nitrite elicited a hypoxic metabolic response in tilapia and deepened this metabolic response under the co-stress of the pathogenic bacterium S.ag (Streptococcus agalactiae). In addition, nitrite-induced elevation of MetHb (Methemoglobin) and its by-product heme was involved in the metabolic response to nitrite-induced hypoxia through the HO/CO pathway, which has not yet been mentioned in previous studies. Moreover, heme affected hepatic metabolic responses through the ROS-ER stress-VLDL pathway. These findings, for the first time, reveal that nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. It not only provides new insights into the results of nitrite on the body but also is beneficial for developing healthy strategies for fish farming.


Asunto(s)
Glucolípidos , Hemo , Nitritos , Animales , Nitritos/toxicidad , Cíclidos/metabolismo , Enfermedades Metabólicas/inducido químicamente , Contaminantes Químicos del Agua/toxicidad
9.
J Ovarian Res ; 17(1): 154, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054488

RESUMEN

BACKGROUND: Mind-body interventions (MBI) have emerged as a potential therapeutic approach, but their effectiveness in the treatment of Polycystic Ovary Syndrome (PCOS) remains inconclusive. This study systematically evaluates the effectiveness of MBI on quality of life, anthropometry, androgen secretion, glucose, and lipid metabolism in PCOS. METHODS: A computer search was conducted across three databases: PubMed, the Cochrane Library, and EMBASE, to identify randomized controlled trials (RCTs) related to MBI for PCOS from their inception until July 2024. DerSimonian and Laird's random-effects model and Stata 17.0 software was employed for our meta-analysis. RESULTS: Twelve RCTs were included. MBI significantly improved PCOSQ subscale scores, including emotional disturbances (MD: 7.75, 95% CI: 6.10 to 9.40), body hair (MD: 2.73, 95% CI: 0.54 to 4.91), menstrual problems (MD: 3.79, 95% CI: 2.89 to 4.69), and weight (MD: 1.48, 95% CI: 0.03 to 2.93). Furthermore, there was a reduction in depression levels (MD: -1.53, 95% CI: -2.93 to -0.13). Sensitivity analysis confirmed the robustness of PCOSQ-Emotional disturbances and PCOSQ-Menstrual problems, with a high GRADE level of evidence for these subscales. Secondary outcome measures, including waist-hip ratio, fasting blood glucose, and HOMA-IR exhibited statistically significant differences. Subgroup analysis revealed that obesity could influence treatment outcomes. CONCLUSION: MBI can serve as an alternative therapy, modulating effect on the quality of life and depression in PCOS patients. Future well-designed, high-quality, and large-scale studies should be conducted to thoroughly assess the impact of different Mind-Body Interventions (MBI) on various PCOS phenotypes. TRIAL REGISTRATION: PROSPERO (CRD42023472035).


Asunto(s)
Terapias Mente-Cuerpo , Síndrome del Ovario Poliquístico , Calidad de Vida , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/psicología , Humanos , Femenino , Terapias Mente-Cuerpo/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
10.
Biology (Basel) ; 13(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39056712

RESUMEN

Glycolipid metabolic disorders (GLMDs) are various metabolic disorders resulting from dysregulation in glycolipid levels, consequently leading to an increased risk of obesity, diabetes, liver dysfunction, neuromuscular complications, and cardiorenal vascular diseases (CRVDs). In patients with GLMDs, excess caloric intake and a lack of physical activity may contribute to oxidative stress (OxS) and systemic inflammation. This study aimed to review the connection between GLMD, OxS, metainflammation, and the onset of CRVD. GLMD is due to various metabolic disorders causing dysfunction in the synthesis, breakdown, and absorption of glucose and lipids in the body, resulting in excessive ectopic accumulation of these molecules. This is mainly due to neuroendocrine dysregulation, insulin resistance, OxS, and metainflammation. In GLMD, many inflammatory markers and defense cells play a vital role in related tissues and organs, such as blood vessels, pancreatic islets, the liver, muscle, the kidneys, and adipocytes, promoting inflammatory lesions that affect various interconnected organs through their signaling pathways. Advanced glycation end products, ATP-binding cassette transporter 1, Glucagon-like peptide-1, Toll-like receptor-4, and sphingosine-1-phosphate (S1P) play a crucial role in GLMD since they are related to glucolipid metabolism. The consequences of this is system organ damage and increased morbidity and mortality.

11.
Immun Inflamm Dis ; 12(7): e1282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967365

RESUMEN

OBJECTIVE: This study aimed to investigate the expressions of glycemic parameters, lipid profile, and thyroid hormone in type 2 diabetes mellitus (T2DM) patients and their correlation. METHODS: Eighty-four patients with T2DM in our hospital were included as the observation group. The T2DM patients were divided into mild group, moderate group, and severe group according to the fasting plasma glucose (FPG) level. Another 84 healthy subjects in the same period of health examination in our hospital were included as the control group. The levels of glycemic parameters, (HbA1c and FPG), lipid profile (TC, TG, LDL-C, and HDL-C) and thyroid hormone (FT3, TSH, and FT4) were measured by automatic biochemical analyzer. The correlation between glycemic parameters, lipid profile, and thyroid hormone was analyzed by Pearson correlation analysis. RESULTS: The FPG, TC, TG, LDL-C, HbA1c, and TSH levels were significantly elevated, while the HDL-C and FT3 levels were significantly declined in the observation group versus to control group (p < .05). The levels of HbA1c, FPG, TC, LDL-C, and TSH were significantly increased, while the levels of HDL-C and FT3 were decreased in moderate and severe groups, when compared to mild group (p < .05). The levels of HbA1c, FPG, TC, LDL-C and TSH were higher, while the level of FT3 was lower in severe group than those in moderate group (p < .05). Pearson Correlation analysis showed that FT3 level in T2DM patients was positively correlated with FPG, HbAlc, TC, TG, and LDL-C levels (p < .05), but negatively correlated with HDL-C level (p < .05). TSH level was negatively correlated with FPG, HbAlc, TC, TG, and LDL-C levels (p < .05), while positively correlated with HDL-C level. CONCLUSION: The thyroid hormone levels were of clinical significance in evaluating glycolipid metabolism and severity of T2DM. Clinical detection of glycolipid metabolism and thyroid hormone levels in T2DM patients is of great significance for diagnosis, evaluation, and targeted treatment of the disease.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Lípidos , Hormonas Tiroideas , Humanos , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Persona de Mediana Edad , Hormonas Tiroideas/sangre , Lípidos/sangre , Glucemia/análisis , Glucemia/metabolismo , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Anciano , Adulto
12.
Gynecol Endocrinol ; 40(1): 2368845, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39058911

RESUMEN

Objectives: This study aimed to explore the effect and mechanism of Yunkang oral liquid (YK) on polycystic ovary syndrome (PCOS). Methods: PCOS model rats were prepared by injecting exogenous androgen dehydroepiandrosterone, and YK was administered simultaneously for 28 days during modeling. The morphology of ovaries and uterus was observed using H&E staining, and serum levels of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. Additionally, serum lipids (TG, HDL-c), blood glucose (GLU), and aminotransferase (AST, ALT) levels were detected. The expression of androgen receptor (AR) protein was determined by Western blotting. Results: YK treatment resulted in reduced serum levels of T, LH and FSH, ameliorated ovarian polycystic-like pathological changes and uterine morphology in PCOS rats, and decreased serum TG, GLU, AST and ALT levels, elevated serum HDL-c levels, and improved abnormalities of glycolipid metabolism accompanying PCOS. Moreover, YK decreased the expression of ovarian AR in PCOS rats. Conclusions: This study indicates that YK may protect the ovaries by inhibiting the expression of AR, which could be a potential treatment for PCOS.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome del Ovario Poliquístico , Receptores Androgénicos , Animales , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Receptores Androgénicos/metabolismo , Receptores Androgénicos/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Ratas Sprague-Dawley , Testosterona/sangre , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Modelos Animales de Enfermedad
13.
Front Nutr ; 11: 1421848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962449

RESUMEN

Introduction: Dietary advanced lipoxidation end products (ALEs), which are abundant in heat-processed foods, could induce lipid metabolism disorders. However, limited studies have examined the relationship between maternal ALEs diet and offspring health. Methods: To investigate the transgenerational effects of ALEs, a cross-generation mouse model was developed. The C57BL/6J mice were fed with dietary ALEs during preconception, pregnancy and lactation. Then, the changes of glycolipid metabolism and gut microbiota of the offspring mice were analyzed. Results: Maternal ALEs diet not only affected the metabolic homeostasis of dams, but also induced hepatic glycolipid accumulation, abnormal liver function, and disturbance of metabolism parameters in offspring. Furthermore, maternal ALEs diet significantly upregulated the expression of TLR4, TRIF and TNF-α proteins through the AMPK/mTOR/PPARα signaling pathway, leading to dysfunctional glycolipid metabolism in offspring. In addition, 16S rRNA analysis showed that maternal ALEs diet was capable of altered microbiota composition of offspring, and increased the Firmicutes/Bacteroidetes ratio. Discussion: This study has for the first time demonstrated the transgenerational effects of maternal ALEs diet on the glycolipid metabolism and gut microbiota in offspring mice, and may help to better understand the adverse effects of dietary ALEs.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38967809

RESUMEN

Brain-derived neurotrophic factor (BDNF) and glycolipid metabolism have been implicated in cognitive impairments and depression among Parkinson's disease (PD). However, the role of sex differences in this relationship remains elusive. This study aimed to investigate the potential sex differences in the link between serum BDNF levels, glycolipid metabolism and cognitive performance among depressive PD patients. PD patients comprising 108 individuals with depression and 108 without depression were recruited for this study. Cognitive function was assessed using the Montreal Cognitive Assessment Beijing version (MOCA-BJ). The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HAMD-17), while motor symptoms were evaluated using the Revised Hoehn and Yahr rating scale (H-Y) and the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III). Laboratory testing and enzyme-linked immunosorbent assay (ELISA) are used to measure serum levels of glycolipid metabolism and BDNF. Females showed superior performance in delayed recall (all p < 0.05), male PD patients exhibited higher scores in naming tasks compared to females in non-depression group. There was no sex differences in serum BDNF levels between depression and non-depression groups. Liner regression analysis indicated BDNF as an independent risk factor for language deficits in male PD patients with depression (p < 0.05), while cholesterol (CHOL) emerged as a cognitive influencing factor, particularly in delayed recall among male PD patients with depression (p < 0.05). Our study reveals extensive cognitive impairments in PD patients with depression. Moreover, BDNF and CHOL may contribute to the pathological mechanisms underlying cognitive deficits, particularly in male patients with depression.

15.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897567

RESUMEN

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Asunto(s)
Gangliósidos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Gangliósidos/metabolismo , Ratones , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Liposomas/metabolismo , Lectinas/metabolismo , Lectinas/química , Unión Proteica , Antígenos CD/metabolismo , Antígenos CD/genética
16.
Cell Mol Life Sci ; 81(1): 265, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880863

RESUMEN

Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.


Asunto(s)
Quimiocina CXCL13 , Glucolípidos , Osificación Heterotópica , Osteogénesis , Receptores CXCR5 , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osificación Heterotópica/genética , Ratones , Humanos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Glucolípidos/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR5/genética , Células Madre/metabolismo , Tendones/metabolismo , Tendones/patología , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Senescencia Celular , Transducción de Señal , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología
17.
Yeast ; 41(8): 477-485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877753

RESUMEN

Cellobiose lipids are surface-active compounds or biological detergents produced by distinct Basidiomycetes yeasts, of which the most and best-described ones belong to the Ustilaginomycetes class. The molecules display slight variation in congener type, which is linked to the hydroxylation position of the long fatty acid, acetylation profile of the cellobiose unit, and presence or absence of the short fatty acid. In general, this variation is strain specific. Although cellobiose lipid biosynthesis has been described for about 11 yeast species, hitherto only two types of biosynthetic gene clusters are identified, and this for only three species. This work adds six more biosynthetic gene clusters and describes for the first time a novel type of cellobiose lipid biosynthetic cluster with a simplified architecture related to specific cellobiose lipids synthesized by Trichosporonaceae family members.


Asunto(s)
Basidiomycota , Celobiosa , Lípidos , Familia de Multigenes , Celobiosa/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Lípidos/biosíntesis , Vías Biosintéticas/genética
19.
Front Immunol ; 15: 1402412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863694

RESUMEN

Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.


Asunto(s)
COVID-19 , Glucolípidos , Homeostasis , Células T Asesinas Naturales , SARS-CoV-2 , Humanos , Glucolípidos/inmunología , Células T Asesinas Naturales/inmunología , Homeostasis/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Activación de Linfocitos/inmunología , Vacunas contra la COVID-19/inmunología
20.
Mol Cell Biochem ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861100

RESUMEN

Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...