Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 316(2): R172-R185, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624974

RESUMEN

The subfornical organ (SFO), a forebrain circumventricular organ that lies outside the blood-brain barrier, has been implicated in arterial pressure and baroreflex responses to angiotensin II (ANG II). We tested whether pharmacological inhibition or selective silencing of SFO ANG II type 1 receptors (AT1R) of two-kidney, one-clip rats with elevated plasma ANG II decreases resting arterial pressure and renal sympathetic nerve activity (RSNA) and/or modulates arterial baroreflex responses of heart rate (HR) and RSNA. Male Sprague-Dawley rats underwent renal artery clipping [2-kidney, 1-clip (2K,1C)] or sham clipping (sham). After 6 wk, conscious rats instrumented with vascular catheters, renal nerve electrodes, and a cannula directed to the SFO were studied. In another set of experiments, rats were instrumented with hemodynamic and nerve radio transmitters and injected with scrambled RNA or silencing RNA targeted against AT1R. Mean arterial pressure (MAP) was significantly higher in 2K,1C rats. Acute SFO injection with the AT1R inhibitor losartan did not change MAP in sham or 2K,1C rats. Baroreflex curves of HR and RSNA were shifted rightward in 2K,1C rats. Losartan exerted no effect. SFO AT1R knockdown did not influence MAP in sham rats but decreased MAP in 2K,1C rats, despite no change in plasma ANG II or resting RSNA. AT1R knockdown prevented the reduction in maximum gain and slope of baroreflex responses of HR and RSNA; the reduced RSNA response to baroreceptor unloading was partially restored in 2K,1C rats. These findings show that AT1R activation within the SFO contributes to hypertension and baroreflex dysfunction in 2K,1C rats and highlight the temporal requirement for reversal of these effects.


Asunto(s)
Presión Arterial/efectos de los fármacos , Barorreflejo/efectos de los fármacos , Losartán/farmacología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos , Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Hemodinámica/efectos de los fármacos , Hipertensión/fisiopatología , Masculino , Ratas Sprague-Dawley , Arteria Renal/fisiopatología , Instrumentos Quirúrgicos
2.
Integr Blood Press Control ; 10: 41-51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238217

RESUMEN

Spontaneous dynamic exercise promotes sympathoinhibition and decreases arterial pressure in two-kidney, one-clip (2K-1C) hypertensive rats. Renal sympathetic nerves stimulate renin secretion and increase renal tubular sodium reabsorption. We hypothesized that daily voluntary wheel running exercise by 2K-1C rats will decrease mean arterial pressure (MAP), plasma angiotensin II (Ang II), and aldosterone as well as normalize urinary sodium and potassium excretion independent of changes in glomerular filtration rate (GFR). Five-week-old male Sprague Dawley rats underwent sham clipping (Sham) or right renal artery clipping (2K-1C). Rats were randomized to standard caging (SED) or cages with running wheels (EX). After 12 weeks, rats were assigned to either collection of aortic blood for measurement of Ang II and aldosterone or assessment of inulin clearances and excretory function. Running distances were comparable in both EX groups. MAP was lower in 2K-1C EX vs 2K-1C SED rats (P<0.05). Plasma Ang II and aldosterone were significantly higher in 2K-1C SED rats and decreased in 2K-1C EX rats to levels similar to Sham SED or Sham EX rats. Clipped kidney weights were significantly lower in both 2K-1C groups, but GFR and urine flow rates were no different from right and left kidneys among the four groups. Total and fractional sodium excretion rates from the unclipped kidney of 2K-1C SED rats were higher vs either Sham group (P<0.05). Values in 2K-1C EX rats were similar to the Sham groups. Potassium excretion paralleled sodium excretion. These studies show that voluntary dynamic exercise in 2K-1C rats decreases plasma Ang II and aldosterone, which contribute to the lower arterial pressure without deleterious effects on GFR. The effects on sodium excretion underscore the impact of pressure natriuresis despite elevated plasma Ang II and aldosterone in sedentary 2K-1C rats. In contrast, potassium excretion is primarily regulated by circulating aldosterone and distal sodium delivery.

3.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R197-208, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26582638

RESUMEN

Renal artery stenosis is increasing in prevalence. Angioplasty plus stenting has not proven to be better than medical management. There has been a reluctance to use available denervation methodologies in this condition. We studied conscious, chronically instrumented, two-kidney, one-clip (2K-1C) Goldblatt rats, a model of renovascular hypertension, to test the hypothesis that renal denervation by cryoablation (cryo-DNX) of the renal nerve to the clipped kidney decreases mean arterial pressure (MAP), plasma and tissue ANG II, and contralateral renal sympathetic nerve activity (RSNA). Five-week-old male Sprague-Dawley rats underwent sham (ShC) or right renal artery clipping (2K-1C), placement of telemetry transmitters, and pair-feeding with a 0.4% NaCl diet. After 6 wk, rats were randomly assigned to cryo-DNX or sham cryotreatment (sham DNX) of the renal nerve to the clipped kidney. MAP was elevated in 2K-1C and decreased significantly in both ShC cryo-DNX and 2K-1C cryo-DNX. Tissue norepinephrine was ∼85% lower in cryo-DNX kidneys. Plasma ANG II was higher in 2K-1C sham DNX but not in 2K-1C cryo-DNX vs ShC. Renal tissue ANG II in the clipped kidney decreased after cryo-DNX. Baseline integrated RSNA of the unclipped kidney was threefold higher in 2K-1C versus ShC and decreased in 2K-1C cryo-DNX to values similar to ShC. Maximum reflex response of RSNA to baroreceptor unloading in 2K-1C was lower after cryo-DNX. Thus, denervation by cryoablation of the renal nerve to the clipped kidney decreases not only MAP but also plasma and renal tissue ANG II levels and RSNA to the contralateral kidney in conscious, freely moving 2K-1C rats.


Asunto(s)
Criocirugía , Hemodinámica , Hipertensión Renovascular/cirugía , Riñón/inervación , Obstrucción de la Arteria Renal/complicaciones , Simpatectomía/métodos , Sistema Nervioso Simpático/cirugía , Angiotensina II/sangre , Animales , Presión Arterial , Barorreflejo , Biomarcadores/sangre , Constricción , Modelos Animales de Enfermedad , Hipertensión Renovascular/diagnóstico , Hipertensión Renovascular/etiología , Hipertensión Renovascular/fisiopatología , Riñón/irrigación sanguínea , Riñón/metabolismo , Masculino , Norepinefrina/sangre , Ratas Sprague-Dawley , Arteria Renal/fisiopatología , Arteria Renal/cirugía , Obstrucción de la Arteria Renal/fisiopatología , Cloruro de Sodio Dietético , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...