Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 12(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37681888

RESUMEN

Camillo Golgi was an esteemed Italian physician and biologist who made major advances in malaria research between the late 19th and early 20th centuries. His groundbreaking contributions in histology, especially through the development of the Golgi staining technique, revolutionized our understanding of cell structures-including Plasmodium parasites-through visualization. Golgi staining also allowed researchers to observe its complex life cycle while documenting it. His careful observations of malaria led to the identification and characterization of its various stages, both asexual forms within human red blood cells, as well as sexual forms carried by mosquito vectors. Golgi's research highlighted the key role mosquitoes play in malaria transmission. He demonstrated the presence of Plasmodium sporozoites within the salivary glands of infected mosquitoes, providing insight into its life cycle and the dynamics of parasite transmission. His comprehensive approach contributed significantly to our understanding of malaria as a systemic illness, leading to subsequent research efforts within this field. The Golgi Protein complex is often located within the cis-Golgi of blood parasite life cycles and mosquito stages, indicating its possible role in optimizing asexual development during blood stages. Furthermore, its expression can be conditionally repressed or its gene can be inactivated to optimize this potential role in improving its functionality for optimizing sexual development during blood stages. Camillo Golgi remains one of the leading lights of malaria research today. His innovative staining techniques, detailed observations, and insightful interpretations have laid the groundwork for subsequent discoveries and advancements in malaria studies. By deciphering intricate parasite life cycle interactions with hosts, his work has provided invaluable insights into malaria biology, pathogenesis, and epidemiology.


Asunto(s)
Culicidae , Malaria , Masculino , Humanos , Animales , Aparato de Golgi , Personal de Salud , Técnicas Histológicas
2.
Biomolecules ; 13(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37189339

RESUMEN

The orexin system is related to food behavior, energy balance, wakefulness and the reward system. It consists of the neuropeptides orexin A and B, and their receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX1R has selective affinity for orexin A, and is implicated in multiple functions, such as reward, emotions, and autonomic regulation. This study provides information about the OX1R distribution in human hypothalamus. The human hypothalamus, despite its small size, demonstrates a remarkable complexity in terms of cell populations and cellular morphology. Numerous studies have focused on various neurotransmitters and neuropeptides in the hypothalamus, both in animals and humans, however, there is limited experimental data on the morphological characteristics of neurons. The immunohistochemical analysis of the human hypothalamus revealed that OX1R is mainly found in the lateral hypothalamic area, the lateral preoptic nucleus, the supraoptic nucleus, the dorsomedial nucleus, the ventromedial nucleus, and the paraventricular nucleus. The rest of the hypothalamic nuclei do not express the receptor, except for a very low number of neurons in the mammillary bodies. After identifying the nuclei and neuronal groups that were immunopositive for OX1R, a morphological and morphometric analysis of those neurons was conducted using the Golgi method. The analysis revealed that the neurons in the lateral hypothalamic area were uniform in terms of their morphological characteristics, often forming small groups of three to four neurons. A high proportion of neurons in this area (over 80%) expressed the OX1R, with particularly high expression in the lateral tuberal nucleus (over 95% of neurons). These results were analyzed, and shown to represent, at the cellular level, the distribution of OX1R, and we discuss the regulatory role of orexin A in the intra-hypothalamic areas, such as its special role in the plasticity of neurons, as well as in neuronal networks of the human hypothalamus.


Asunto(s)
Hipotálamo , Neuropéptidos , Animales , Humanos , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Neuronas/metabolismo
3.
Int Neurourol J ; 26(Suppl 2): S94-105, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36503212

RESUMEN

PURPOSE: Parkinson disease (PD) is a progressive neurodegenerative disorder in which dopaminergic (DAergic) systems are destroyed (particularly in the nigrostriatal system), causing both motor and nonmotor symptoms. Hippocampal neuroplasticity is altered in PD animal models, resulting in nonmotor dysfunctions. However, little is known about the precise mechanism underlying the hippocampal dysfunctions in PD. METHODS: Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in adult Sprague Dawley rats. Both motor and nonmotor symptoms alongside the expression of tyrosine hydroxylase (TH) in the substantia nigra and striatum were confirmed in 6-OHDA-lesioned rats. The neuronal architecture in the hippocampus was analyzed by Golgi staining. RESULTS: During the 7-8 weeks after infusion, the 6-OHDA-lesioned rats exhibited motor and nonmotor dysfunctions (especially anxiety/depression-like behaviors). Rats with unilateral 6-OHDA infusion displayed reduced TH+ immunoreactivity in the ipsilateral nigrostriatal pathway of the brain. Golgi staining revealed that striatal 6-OHDA infusion significantly decreased the dendritic complexity (i.e., number of crossing dendrites, total dendritic length, and branch points) in the ipsilateral hippocampal conus ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions. Additionally, the dendritic spine density and morphology were significantly altered in the CA1 apical/basal and DG subregions following striatal 6-OHDA infusion. However, alteration of microglial and astrocytic distributions did not occur in the hippocampus following striatal 6-OHDA infusion. CONCLUSION: The present study provides anatomical evidence that the structural plasticity in the hippocampus is altered in the late phase following striatal 6-OHDA infusion in rats, possibly as a result of the prolonged suppression of the DAergic system, and independent of neuroinflammation.

4.
Front Toxicol ; 4: 918520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936386

RESUMEN

The rabbit model is gaining importance in the field of neurodevelopmental evaluation due to its higher similarity to humans in terms of brain development and maturation than rodents. In this publication, we detailed 14 protocols covering toxicological relevant endpoints for the assessment of neurodevelopmental adverse effects in the rabbit species. These protocols include both in vitro and in vivo techniques, which also cover different evaluation time-points, the neonatal period, and long-term examinations at postnatal days (PNDs) 50-70. Specifically, the protocols (P) included are as follows: neurosphere preparation (GD30/PND0; P2) and neurosphere assay (P3), behavioral ontogeny (PND1; P4), brain obtaining and brain weight measurement at two different ages: PND1 (P5) and PND70 (P12), neurohistopathological evaluations after immersion fixation for neurons, astrocytes, oligodendrocytes and microglia (PND1; P6-9) or perfusion fixation (PND70; P12), motor activity (P11, open field), memory and sensory function (P11, object recognition test), learning (P10, Skinner box), and histological evaluation of plasticity (P13 and P14) through dendritic spines and perineuronal nets. The expected control values and their variabilities are presented together with the information on how to troubleshoot the most common issues related to each protocol. To sum up, this publication offers a comprehensive compilation of reliable protocols adapted to the rabbit model for neurodevelopmental assessment in toxicology.

5.
Neuroscience ; 498: 1-18, 2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-35752428

RESUMEN

Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology. Despite the array of technological advances, including iontophoretic microinjection of Lucifer yellow (LY) fluorescent dye, Golgi staining continues to be one of the most popular approaches to visualize dendritic spines. Here, we compared dendritic spine density and morphology among pyramidal neurons in layers 2/3 of the mouse medial prefrontal cortex (mPFC) and pyramidal neurons in hippocampal CA1 using three-dimensional digital reconstructions of (1) brightfield microscopy z-stacks of Golgi-impregnated dendrites and (2) confocal microscopy z-stacks of LY-filled dendrites. Analysis of spine density revealed that the LY microinjection approach enabled detection of approximately three times as many spines as the Golgi staining approach in both brain regions. Spine volume measurements were larger using Golgi staining compared to LY microinjection in both mPFC and CA1. Spine length was mostly comparable between techniques in both regions. In the mPFC, head diameter was similar for Golgi staining and LY microinjection. However, in CA1, head diameter was approximately 50% smaller on LY-filled dendrites compared to Golgi staining. These results indicate that Golgi staining and LY microinjection yield different spine density and morphology measurements, with Golgi staining failing to detect dendritic spines and overestimating spine size.


Asunto(s)
Espinas Dendríticas , Células Piramidales , Animales , Dendritas , Hipocampo , Isoquinolinas , Ratones
6.
IBRO Neurosci Rep ; 12: 280-296, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746978

RESUMEN

Background: Postpartum depression is a mood disorder that affects about 9-20% of women after child birth. Reports suggest that gestational iron deficiency can cause a deficit in behavioral, cognitive and affective functions and can precipitate depressive symptoms in mothers during the postpartum period. The present study examined the effect of iron supplementation on depressive behavior during postpartum period in a rat model. Method: Female Sprague-Dawley rats were crossed. Pregnant rats received iron, fluoxetine, desferrioxamine or vehicle throughout the period of gestation. During the postpartum period, mothers from all groups were taken through the open field test (OFT), forced swim test (FST), novelty-induced hypophagia (NIH) and sacrificed for histological examination of the brains. Results: Results showed that rats treated with iron-chelating agent, desferrioxamine, and vehicle during gestation exhibited increased immobility scores in the FST, increased latency to feed and reduced feeding in the NIH with corresponding decreased number of neurons and dendritic branches in the cortex of the brain. These depression-related effects were attenuated by perinatal iron supplementation which showed decreased immobility scores in the FST comparable to rats treated with fluoxetine, a clinically effective antidepressant. Iron treatment also decreased latency to feeding while increasing feeding behavior in the NIH. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex compared to vehicle- and desferrioxamine-treated groups. Conclusion: The results suggest that, iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats, attenuates neuronal loss associated with depression and increases dendritic spine density.

7.
Cell Biosci ; 12(1): 54, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526070

RESUMEN

BACKGROUND: Low-density lipoprotein receptor-related protein 4 (LRP4) plays a critical role in the central nervous system (CNS), including hippocampal synaptic plasticity, maintenance of excitatory synaptic transmission, fear regulation, as well as long-term potentiation (LTP). RESULTS: In this study, we found that Lrp4 was highly expressed in layer II of the piriform cortex. Both body weight and brain weight decreased in Lrp4ECD/ECD mice without TMD (Transmembrane domain) and ICD (intracellular domain) of LRP4. However, in the piriform cortical neurons of Lrp4ECD/ECD mice, the spine density increased, and the frequency of both mEPSC (miniature excitatory postsynaptic current) and sEPSC (spontaneous excitatory postsynaptic current) was enhanced. Intriguingly, finding food in the buried food-seeking test was prolonged in both Lrp4ECD/ECD mice and Lrp4 cKO (conditional knockout of Lrp4 in the piriform cortex) mice. CONCLUSIONS: This study indicated that the full length of LRP4 in the piriform cortex was necessary for maintaining synaptic plasticity and the integrity of olfactory function.

8.
J Neuroinflammation ; 19(1): 85, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414007

RESUMEN

BACKGROUND: Angiostrongylus cantonensis is also known as rat lungworm. Infection with this parasite is a zoonosis that can cause eosinophilic meningitis and/or eosinophilic meningoencephalitis in humans and may lead to fatal outcomes in severe cases. In this study, we explored the mechanisms of the impairments in the cognitive functions of mice infected with A. cantonensis. METHODS: In infected mice with different infective intensities at different timepoint postinfection, loss and recovery of cognitive functions such as learning and memory abilities were determined. Neuronal death and damage to synaptic structures were analyzed by Western blotting and IHC in infected mice with different infection intensities at different timepoint postinfection. RESULTS: The results of behavioral tests, pathological examinations, and Golgi staining showed that nerve damage caused by infection in mice occurred earlier than pathological changes of the brain. BDNF was expressed on 14 day post-infection. Cleaved caspase-3 increased significantly in the late stage of infection. However, IHC on NeuN indicated that no significant changes in the number of neurons were found between the infected and uninfected groups. CONCLUSIONS: The synaptic loss caused by the infection of A. cantonensis provides a possible explanation for the impairment of cognitive functions in mice. The loss of cognitive functions may occur before severe immunological and pathological changes in the infected host.


Asunto(s)
Angiostrongylus cantonensis , Meningitis , Infecciones por Strongylida , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Ratas
9.
Mol Neurobiol ; 59(2): 1002-1017, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822124

RESUMEN

Monocarboxylate transporters (MCTs) shuttle molecules, including L-lactate, involved in metabolism and cell signaling of the central nervous system. Astrocyte-specific MCT4 is a key component of the astrocyte-neuron lactate shuttle (ANLS) and is important for neuroplasticity and learning of the hippocampus. However, the importance of astrocyte-specific MCT4 in neuroplasticity of the M1 primary motor cortex remains unknown. In this study, we investigated astrocyte-specific MCT4 in motor learning and neuroplasticity of the M1 primary motor cortex using a cell-type specific shRNA knockdown of MCT4. Knockdown of astrocyte-specific MCT4 resulted in impaired motor performance and learning on the accelerating rotarod. In addition, MCT4 knockdown was associated with a reduction of neuronal dendritic spine density and spine width and decreased protein expression of PSD95, Arc, and cFos. Using near-infrared-conjugated 2-deoxyglucose uptake as a surrogate marker for neuronal activity, MCT4 knockdown was also associated with decreased neuronal activity in the M1 primary motor cortex and associated motor regions including the dorsal striatum and ventral thalamus. Our study supports a potential role for astrocyte-specific MCT4 and the ANLS in the neuroplasticity of the M1 primary motor cortex. Targeting MCT4 may serve to enhance neuroplasticity and motor repair in several neurological disorders, including Parkinson's disease and stroke.


Asunto(s)
Astrocitos , Transportadores de Ácidos Monocarboxílicos , Corteza Motora , Animales , Astrocitos/metabolismo , Espinas Dendríticas/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Corteza Motora/metabolismo , Neuronas/metabolismo
10.
Brain Sci ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201837

RESUMEN

Among the animal models of Parkinson's disease (PD), the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model has shown both dopaminergic (DA) damage and related motor control defects, as observed in patients with PD. Recent studies have suggested that the DA system interacts with the synaptic plasticity of the hippocampus in PD. However, little is known about how alterations in the hippocampal structural plasticity are affected by the DA damage in MPTP-lesioned models. In the present study, we investigated alterations in dendritic complexity and spine density in the mouse hippocampus following acute MPTP treatment (22 mg/kg, intraperitoneally, four times/day, 2-h intervals). We confirmed that acute MPTP treatment significantly decreased initial motor function and persistently reduced the number of tyrosine hydroxylase-positive DA neurons in the substantia nigra. Golgi staining showed that acute MPTP treatment significantly reduced the spine density of neuronal dendrites in the cornu ammonis 1 (CA1) apical/basal and dentate gyrus (DG) subregions of the mouse hippocampus at 8 and 16 days after treatment, although it did not affect dendritic complexity (e.g., number of crossing dendrites, total dendritic length, and branch points per neuron) in both CA1 and DG subregions at all time points after treatment. Therefore, the present study provides anatomical evidence that acute MPTP treatment affects synaptic structure in the hippocampus during the late phase after acute MPTP treatment in mice, independent of any changes in the dendritic arborization of hippocampal neurons. These findings offer data for the ability of the acute MPTP-lesioned mouse model to replicate the non-nigrostriatal lesions of clinical PD.

11.
BMC Biol ; 19(1): 152, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330271

RESUMEN

BACKGROUND: Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. RESULTS: We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. CONCLUSIONS: Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.


Asunto(s)
Imagenología Tridimensional , Tomografía , Coloración y Etiquetado , Tomografía Computarizada por Rayos X , Flujo de Trabajo
12.
Front Pharmacol ; 12: 679759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995109

RESUMEN

Mephedrone (4-MMC), despite its illegal status, is still a widely used psychoactive substance. Its effects closely mimic those of the classical stimulant drug methamphetamine (METH). Recent research suggests that unlike METH, 4-MMC is not neurotoxic on its own. However, the neurotoxic effects of 4-MMC may be precipitated under certain circumstances, such as administration at high ambient temperatures. Common use of 4-MMC in conjunction with alcohol raises the question whether this co-consumption could also precipitate neurotoxicity. A total of six groups of adolescent rats were treated twice daily for four consecutive days with vehicle, METH (5 mg/kg) or 4-MMC (30 mg/kg), with or without ethanol (1.5 g/kg). To investigate persistent delayed effects of the administrations at two weeks after the final treatments, manganese-enhanced magnetic resonance imaging brain scans were performed. Following the scans, brains were collected for Golgi staining and spine analysis. 4-MMC alone had only subtle effects on neuronal activity. When administered with ethanol, it produced a widespread pattern of deactivation, similar to what was seen with METH-treated rats. These effects were most profound in brain regions which are known to have high dopamine and serotonin activities including hippocampus, nucleus accumbens and caudate-putamen. In the regions showing the strongest activation changes, no morphological changes were observed in spine analysis. By itself 4-MMC showed few long-term effects. However, when co-administered with ethanol, the apparent functional adaptations were profound and comparable to those of neurotoxic METH.

13.
J Mol Neurosci ; 71(9): 1849-1862, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34041687

RESUMEN

A decline of estrogen level leads to spatial learning and memory impairments, which mediated by hippocampus and cortex. Accumulating evidences demonstrated that aerobic exercise improved memory of postmenopausal women and ovariectomized (OVX) mice. However, the molecular mechanisms for this protection of exercise are not completely clear. Accordingly, the present study was designed to examine the effect of aerobic exercise on the dendritic morphology in the hippocampus and cerebral cortex, as well as the BNDF-mTOR signaling pathway of OVX mice. Adult female C57BL/6 mice were divided into four groups (n = 10/group): sham-operated (SHAM/CON), sham-operated with 8-week treadmill exercise (SHAM/EX), ovariectomized operated (OVX/CON), and ovariectomized operated with exercise (OVX/EX). Aerobic exercise improved the impairment of dendritic morphology significantly induced by OVX that was tested by Golgi staining, and it also upregulated the synaptic plasticity-related protein expression of PSD95 and GluR1 as well as activated BDNF-mTOR signaling pathway in the hippocampus and cerebral cortex. In conclusion, aerobic exercise reversed the change of dendritic morphology and increased the synaptic plasticity-related protein expression in the hippocampus and cerebral cortex of OVX mice. The positive effects induced by exercise might be mediated through the BDNF-mTOR signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Dendritas/patología , Estrógenos/deficiencia , Hipocampo/metabolismo , Carrera , Serina-Treonina Quinasas TOR/metabolismo , Animales , Corteza Cerebral/fisiología , Dendritas/metabolismo , Dendritas/fisiología , Estrógenos/metabolismo , Femenino , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Ovariectomía/efectos adversos , Condicionamiento Físico Animal , Transducción de Señal
14.
Neurosci Lett ; 751: 135807, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33705934

RESUMEN

Reduced cerebellar volume and motor dysfunction have previously been observed in the GFAP-IL6 murine model of chronic neuroinflammation. This study aims to extend these findings by investigating the effect of microglial activation and ageing on the total number of Purkinje cells and the morphology of their dendritic arborization. Through comparison of transgenic GFAP-IL6 mice and their wild-type counterparts at the ages of 12 and 24-months, we were able to investigate the effects of ageing and chronic microglial activation on Purkinje cells. Unbiased stereology was used to estimate the number of microglia in Iba1+ stained tissue and Purkinje cells in calbindin stained tissue. Morphological analyses were made using 3D reconstructions of images acquired from the Golgi-stained cerebellar tissue. We found that the total number of microglia increased by approximately 5 times in the cerebellum of GFAP-IL6 mice compared to their WT littermates. The number of Purkinje cells decreased by as much as 50 % in aged wild type mice and 83 % in aged GFAP-IL6 mice. The remaining Purkinje cells in these cohorts were found to have significant reductions in their total dendritic length and number of branching points, indicating how the complexity of the Purkinje cell dendritic arbor reduces through age and inflammation. GFAP-IL6 mice, when compared to WT mice, had higher levels of microglial activation and more profound neurodegenerative changes in the cerebellum. The presence of constitutive IL6 production, driving chronic neuroinflammation, may account for these neurodegenerative changes in GFAP-IL6 mice.


Asunto(s)
Envejecimiento/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucina-6/metabolismo , Microglía/metabolismo , Células de Purkinje/citología , Envejecimiento/metabolismo , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Proteína Ácida Fibrilar de la Glía/genética , Inflamación/metabolismo , Interleucina-6/genética , Ratones , Microglía/citología , Células de Purkinje/metabolismo , Células de Purkinje/patología
15.
Mol Brain ; 13(1): 166, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302985

RESUMEN

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential for inducing the neuromuscular junction (NMJ) formation in muscle fibers, and LRP4 plays a critical role in dendritic development and synaptogenesis in the central nervous system (CNS). As a single transmembrane protein, LRP4 contains an enormously sizeable extracellular domain (ECD), containing multiple LDLα repeats in the N-terminal of ECD. LRP4 only with extracellular domain acts as a similar mechanism of full-length LRP4 in muscles to stimulate acetylcholine receptor clustering. In this study, we elucidated that LDLα repeats of LRP4 maintained the body weight and survival rate. Dendritic branches of the pyramidal neurons in Lrp4-null mice with LRP4 LDLα repeats residue were more than in Lrp4-null mice without residual LRP4 domain. Supplement with conditioned medium from LRP4 LDLα overexpression cells, the primary culture pyramidal neurons achieved strong dendritic arborization ability. Besides, astrocytes with LRP4 LDLα repeats residue could promote pyramidal neuronal dendrite arborization in the primary co-cultured system. These observations signify that LRP4 LDLα repeats play a prominent underlying role in dendrite arborization.


Asunto(s)
Astrocitos/metabolismo , Dendritas/metabolismo , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/metabolismo , Secuencias Repetitivas de Aminoácido , Animales , Peso Corporal , Células Cultivadas , Corteza Cerebral/patología , Células HEK293 , Humanos , Ratones Noqueados , Dominios Proteicos , Células Piramidales/metabolismo , Análisis de Supervivencia
16.
Brain Behav Immun ; 89: 371-379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717404

RESUMEN

Reduced synaptodendritic complexity appears to be a key feature in human immunodeficiency virus (HIV)-associated neurological disorder (HAND). Viral proteins, and in particular the envelope protein gp120, play a role in the pathology of synapses. Gp120 has been shown to increase both in vitro and in vivo the proneurotrophin brain-derived neurotrophic factor, which promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). To provide evidence that p75NTR plays a role in gp120-mediated loss of synapses in vivo, we intercrossed gp120tg mice with p75NTR null mice and used molecular, histological and behavioral analyses to establish a link between p75NTR and gp120-mediated synaptic simplification. Synaptosomes obtained from the striatum of gp120tg mice exhibited a significant increase in p75NTR levels concomitantly to a decrease in synaptic markers such as TrkB and PSD95. Analysis of striatal dendritic spines by Golgi staining revealed that gp120tg mice display a reduced proportion of mushroom-type spines in addition to fewer spines overall, when compared to wild type or gp120tg lacking one or two p75NTR alleles. Moreover, removal of one p75NTR allele in gp120 transgenic mice abolished the gp120-driven impairment on a task of striatal-dependent motor learning. These data indicate that p75NTR could be a key player in HIV-mediated synaptic simplification in the striatum.


Asunto(s)
Infecciones por VIH , Receptor de Factor de Crecimiento Nervioso , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína gp120 de Envoltorio del VIH , Ratones , Receptor de Factor de Crecimiento Nervioso/metabolismo , Regulación hacia Arriba
17.
Morphologie ; 104(347): 267-279, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32534997

RESUMEN

Scholars began exploring anatomy of nervous system from ancient times; however, considerable progress could only be made during the European Renaissance from the 14th century onwards. The present study aimed to document significant discoveries in this context in chronological order to establish the cascading pattern of advancement in knowledge. The findings of Leonardo da Vinci (15th century), Vesalius (16th century) and their contemporaries, which were based on macroscopic dissection, helped to break the shackles of misconceptions in hypotheses prevalent from the time of Galen. However, very little headway could be achieved beyond superficial descriptions. Willis (17th century), through his experimental studies, provided the much-needed impetus and his discoveries put the study of brain and nervous system on their modern footing. In the following years, prominent researchers through their observations based on the use of microscopy and advanced histological techniques (prevalent after invention of microtome) contributed towards significant discoveries related to the morphological details of different components of nervous system. Such scientific activities culminated in remarkable advancements by the middle of 19th century. The advent of Golgi's staining technique and subsequent histological exploits of Cajal (late 19th century) established the neuron theory, which is central to comprehending the functioning of nervous system. Availability of Golgi's staining technique remarkably contributed in detailing the anatomical structure of nervous system at microscopic level. Access to structural details pertaining to living anatomy (late 20th century) and focus on findings at the molecular level by turn of 21st century have firmly established neuroscience as a sovereign academic discipline.


Asunto(s)
Anatomía , Sistema Nervioso , Encéfalo , Disección , Neuronas , Coloración y Etiquetado
18.
Neuroscience ; 438: 100-115, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407976

RESUMEN

Stress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. Male Sprague-Dawley rats were subjected to acute FS-stress, followed by measurement of time-dependent (1, 7 and 14 days) structural plasticity (dendritic arborization, spine number and morphology) in hippocampal CA1 pyramidal neurons and expression patterns of molecular markers implicated in neuronal plasticity. We found that acute stress significantly decreased spine number, dendritic length, and altered spine morphometric parameters at all time points evaluated after stress. This was paralleled by changes in the gene expression of Spinophilin and Cdc42, and protein expression of homer1. Pretreatment with DMI prevented the stress-induced dendritic atrophy and spine loss 14 days after acute FS. However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.


Asunto(s)
Hipocampo , Células Piramidales , Animales , Dendritas , Espinas Dendríticas , Masculino , Plasticidad Neuronal , Corteza Prefrontal , Ratas , Ratas Sprague-Dawley
19.
Environ Toxicol Pharmacol ; 75: 103323, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31935550

RESUMEN

BACKGROUND: Exposure to arsenic has been reported to affect the nervous system in a number of ways. Various epidemiological studies suggest cognitive impairment in subjects following exposure to environmental arsenic. The goal of the present study was to determine if supplementation of exogenous α-lipoic acid (ALA) could ameliorate sodium arsenite (NaAsO2) induced adverse effects on learning and memory and synaptic connectivity in rat hippocampus. METHODS: Accordingly, NaAsO2 alone (1.5/2.0 mg/kg bw) or NaAsO2 along with ALA (70 mg/kg bw) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 4-17 to Wistar rat pups (experimental groups) and the Control groups received either distilled water or no treatment at all. After carrying out Elevated Plus Maze (EPM) and Morris Water Maze (MWM) test, the fresh brain tissues were collected on PND 18 and processed for Golgi Cox staining. RESULTS: Observations of MWM test revealed impaired learning and memory in iAs alone treated animals as against those co-exposed to iAs and ALA. In Golgi stained hippocampal sections of iAs alone treated animals, decreased dendritic arborization and reduced number of spines in pyramidal neurons (CA1) and granule cells (DG) was observed whereas neuronal morphology was preserved in the controls and ALA supplemented groups CONCLUSIONS: These observations are suggestive of beneficial effects of ALA on iAs induced effects on learning and memory as well as on hippocampal neuronal morphology.


Asunto(s)
Arsenitos/toxicidad , Sustancias Protectoras/farmacología , Compuestos de Sodio/toxicidad , Ácido Tióctico/farmacología , Animales , Hipocampo/efectos de los fármacos , Plasticidad Neuronal , Ratas Wistar , Memoria Espacial
20.
Neural Regen Res ; 15(8): 1490-1495, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31997813

RESUMEN

The prefrontal neocortex is involved in many high cognitive functions in humans. Deficits in neuronal and neurocircuitry development in this part of the cerebrum have been associated with various neuropsychiatric disorders in adolescents and adults. There are currently little available data regarding prenatal dendrite and spine formation on projecting neurons in the human prefrontal neocortex. Previous studies have demonstrated that Golgi silver staining can identify neurons in the frontal lobe and visual cortex in human embryos. In the present study, five fetal brains, at 19, 20, 26, 35, and 38 gestational weeks, were obtained via the body donation program at Xiangya School of Medicine, Central South University, China. Golgi-stained pyramidal neurons in layer V of Brodmann area 46 in fetuses were quantitatively analyzed using the Neurolucida morphometry system. Results revealed that somal size, total dendritic length, and branching points of these neurons increased from 26 to 38 gestational weeks. There was also a large increase in dendritic spines from 35 to 38 gestational weeks. These findings indicate that, in the human prefrontal neocortex, dendritic growth in layer V pyramidal neurons occurs rapidly during the third trimester of gestation. The use of human fetal brain tissue was approved by the Animal Ethics Committee of Xiangya School of Medicine, Central South University, China (approval No. 2011-045) on April 5, 2011.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...