Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
PeerJ ; 5: e3966, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085761

RESUMEN

Here we report a unique trophic interaction between the cryptogenic and sometimes highly toxic hydrozoan clinging jellyfish Gonionemus sp. and the spider crab Libinia dubia. We assessed species-specific predation on the Gonionemus medusae by crabs found in eelgrass meadows in Massachusetts, USA. The native spider crab species L. dubia consumed Gonionemus medusae, often enthusiastically, but the invasive green crab Carcinus maenus avoided consumption in all trials. One out of two blue crabs (Callinectes sapidus) also consumed Gonionemus, but this species was too rare in our study system to evaluate further. Libinia crabs could consume up to 30 jellyfish, which was the maximum jellyfish density treatment in our experiments, over a 24-hour period. Gonionemus consumption was associated with Libinia mortality. Spider crab mortality increased with Gonionemus consumption, and 100% of spider crabs tested died within 24 h of consuming jellyfish in our maximum jellyfish density containers. As the numbers of Gonionemus medusae used in our experiments likely underestimate the number of medusae that could be encountered by spider crabs over a 24-hour period in the field, we expect that Gonionemus may be having a negative effect on natural Libinia populations. Furthermore, given that Libinia overlaps in habitat and resource use with Carcinus, which avoids Gonionemus consumption, Carcinus populations could be indirectly benefiting from this unusual crab-jellyfish trophic relationship.

2.
PeerJ ; 5: e3205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28439470

RESUMEN

Determining whether a population is introduced or native to a region can be challenging due to inadequate taxonomy, the presence of cryptic lineages, and poor historical documentation. For taxa with resting stages that bloom episodically, determining origin can be especially challenging as an environmentally-triggered abrupt appearance of the taxa may be confused with an anthropogenic introduction. Here, we assess diversity in mitochondrial cytochrome oxidase I sequences obtained from multiple Atlantic and Pacific locations, and discuss the implications of our findings for understanding the origin of clinging jellyfish Gonionemus in the Northwest Atlantic. Clinging jellyfish are known for clinging to seagrasses and seaweeds, and have complex life cycles that include resting stages. They are especially notorious as some, although not all, populations are associated with severe sting reactions. The worldwide distribution of Gonionemus has been aptly called a "zoogeographic puzzle" and our results refine rather than resolve the puzzle. We find a relatively deep divergence that may indicate cryptic speciation between Gonionemus from the Northeast Pacific and Northwest Pacific/Northwest Atlantic. Within the Northwest Pacific/Northwest Atlantic clade, we find haplotypes unique to each region. We also find one haplotype that is shared between highly toxic Vladivostok-area populations and some Northwest Atlantic populations. Our results are consistent with multiple scenarios that involve both native and anthropogenic processes. We evaluate each scenario and discuss critical directions for future research, including improving the resolution of population genetic structure, identifying possible lineage admixture, and better characterizing and quantifying the toxicity phenotype.

3.
Zootaxa ; 4365(4): 487-494, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29686202

RESUMEN

A new species of a crawling limnomedusa belonging to the genus Gonionemus (Hydrozoa: Limnomedusae: Olindiidae) was collected from the brown alga Cystophora monilifera in an intertidal rock pool in Western Port, Victoria, Australia. The new species is described and compared with the three known species of Gonionemus. The mitochondrial DNA barcode markers cytochrome oxidase I and 16S rRNA were sequenced and compared to sequences from other olindiid species. The sequencing results corroborate the morphological findings.


Asunto(s)
Hidrozoos , Animales , Australia , Filogenia , ARN Ribosómico 16S , Australia del Sur , Victoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...