Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003031

RESUMEN

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Asunto(s)
Carbón Orgánico , Carbón Orgánico/química , Halogenación , Oxidación-Reducción , Dibromuro de Etileno/química , Modelos Químicos
2.
Environ Res ; 247: 118257, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262511

RESUMEN

This study introduces the UV/glucose-oxidase@Kaolin (GOD@Kaolin) coupled organic green rust (OGR) system (UV/OGR/GOD@Kaolin) to investigate the promotion of glucose oxidase activity by UV light and its synergistic degradation mechanism for photosensitive pollutants, specifically targeting the efficient degradation of 4-chlorophenol (4-CP). The enzyme system demonstrates its ability to overcome drawbacks associated with traditional Fenton systems, including a narrow pH range and high localized concentration of H2O2, by gradually releasing hydrogen peroxide in situ within a neutral environment. In the presence of UV radiation under specific conditions, enhanced enzyme activity is observed, resulting in increased efficiency in pollutant removal. The gradual release of hydrogen peroxide plays a crucial role in preventing unwanted reactions among active substances. These unique features facilitate the generation of highly reactive species, such as Fe(IV)O, •OH, and •O2-, tailored to efficiently target the organic components of interest. Additionally, the system establishes a positive iron cycle, ensuring a sustained reactive capability throughout the degradation process. The results highlight the UV/OGR/GOD@Kaolin system as an effective and environmentally friendly approach for the degradation of 4-CP, and the resilience of the enzyme extends the system's applicability to a broader range of scenarios.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Rayos Ultravioleta , Peróxido de Hidrógeno/química , Glucosa Oxidasa/metabolismo , Caolín , Glucosa , Oxidación-Reducción , Contaminantes Químicos del Agua/química
3.
Environ Res ; 242: 117667, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980994

RESUMEN

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Asunto(s)
Compuestos Férricos , Compuestos Ferrosos , Shewanella putrefaciens , Oxidación-Reducción , Fosfatos , Minerales
4.
Water Res ; 247: 120818, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37925859

RESUMEN

Electrocoagulation (EC) is promising for the removal of chemical and microbial contaminants. Although the removal of pathogens from wastewater is efficient by conventional Fe-EC in the presence of dissolved oxygen (DO), the non-inactivated pathogens in the sediment still have a risk. Herein, the inactivation of Escherichia coli (E. coli) with the mixed-valent iron nanoparticles, magnetite and green rust (GR), in-situ generated from Fe-EC process in the absence of DO was investigated. The inactivation efficiency was significantly higher with magnetite (4.7 log cells) and GR (3.2 log cells) compared with FeOOH (0.7-1.7 log cells) generated at 50 mA in 10 min. The unstable in-situ generated magnetite with positive charges was prone to adsorb onto E. coli, damaging the cell membrane, inactivating the bacteria. The unstable in-situ generated GR was prone to coagulate with E. coli, delivering Fe2+ into the cell and inducing the generation of endogenous ROS, inactivating the bacteria. Fe-EC in the absence of DO was proved to be efficient for the inactivation of E. coli (4.2-4.3 log cells) in real wastewater. These findings identified the ignored inactivation effect and mechanism of E. coli with magnetite and GR generated in situ from Fe-EC process, which will provide theoretical support for real applications.


Asunto(s)
Nanopartículas , Purificación del Agua , Óxido Ferrosoférrico , Escherichia coli , Aguas Residuales , Electrocoagulación , Bacterias
5.
J R Soc Interface ; 20(206): 20230386, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37727071

RESUMEN

Shared coordination geometries between metal ions within reactive minerals and enzymatic metal cofactors hints at mechanistic and possibly evolutionary homology between particular abiotic chemical mineralogies and biological metabolism. The octahedral coordination of reactive Fe2+/3+ minerals such as green rusts, endemic to anoxic sediments and the early Earth's oceans, mirrors the di-iron reaction centre of soluble methane monooxygenase (sMMO), responsible for methane oxidation in methanotrophy. We show that methane oxidation occurs in tandem with the oxidation of green rust to lepidocrocite and magnetite, mimicking radical-mediated methane oxidation found in sMMO to yield not only methanol but also halogenated hydrocarbons in the presence of seawater. This naturally occurring geochemical pathway for CH4 oxidation elucidates a previously unidentified carbon cycling mechanism in modern and ancient environments and reveals clues into mineral-mediated reactions in the synthesis of organic compounds necessary for the emergence of life.


Asunto(s)
Basidiomycota , Metanol , Metano , Oxidación-Reducción , Evolución Biológica
6.
Geobiology ; 21(6): 758-769, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37615250

RESUMEN

Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite ("white rust"), which quickly converted to chloride-containing fougerite ("green rust"). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.

7.
Chemosphere ; 339: 139703, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536537

RESUMEN

Ethylenediamminetetraacetatonickel(II) (EDTA-Ni(II)) has emerged as a significant soil and groundwater contaminant due to the increasing agricultural and industrial activities, posing environmental challenges. This study focuses on addressing the reactivity of green rust (GR), which can be hindered by oxidation with oxygen, limiting its effectiveness in remediation processes. To overcome this limitation and enhance the adsorptive capacities, the combination of sulfate green rust (SO4-GR) with various Fe(II)/Fe(III) ratios with a high-surface-area adsorbent, MoS2, resulting in the formation of binary composites of green rust-deposited MoS2 (MSGs) were explored. The aim was to improve the removal efficiency of EDTA-Ni(II) from contaminated wastewater. To characterize the MSGs, a comprehensive analysis using XRD, SEM, TEM, FTIR, and X-ray absorption spectroscopy was performed. The surface areas of the MSGs were smaller than that of MoS2 but larger than that of the SO4-GRs, indicating a promising composite material. XANES spectra analysis revealed that both MSGs and SO4-GRs exhibited a mixture of ferrous and ferric ions, as evident from their spectral positioning between FeO and Fe2O3. The optimal pH for efficient removal of EDTA-Ni(II) was 3, which resulted in removal efficiencies of 45.6%, 47.3%, 46.0%, and 46.2% for MSG 1, MSG 2, MSG 3, and MSG 4 after 24 h, respectively. Reducing the initial concentration of EDTA-Ni(II) to 50 mg Ni(II)/L effectively doubled the removal efficiency. Notably, as EDTA-Ni(II) was removed, an increased leaching of iron was observed, leading to a total iron concentration exceeding 40 mg/L for the composites with higher Fe(II)/Fe(III) ratios. These findings underscore the potential of MSG as a promising material for degrading EDTA-Ni(II) in contaminated wastewater, offering a viable solution to mitigate the environmental impact of this emerging contaminant. This study contributes to the understanding of green rust reactivity and provides valuable insights for developing effective strategies to address the challenges associated with EDTA-Ni(II) contamination.


Asunto(s)
Compuestos Férricos , Aguas Residuales , Compuestos Férricos/química , Ácido Edético , Molibdeno , Hierro/química , Compuestos Ferrosos/química
8.
J Hazard Mater ; 458: 131872, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379598

RESUMEN

Humic acid (HA) and ferrous minerals (e.g. green rust, GR) are abundant in groundwater. HA acts as a geobattery that take up and release electrons in redox-alternating groundwater environments. However, the impact of this process on the fate and transformation of groundwater pollutants is not fully understood. In this work, we found that the adsorption of HA on GR inhibited the adsorption of tribromophenol (TBP) under anoxic conditions. Meanwhile, GR could donate electrons to HA, causing the electron donating capacity of HA rapidly increase from 12.7% to 27.4% in 5 min. The electron transfer process from GR to HA significantly increased the yield of hydroxyl radicals (•OH) and the degradation efficiency of TBP during GR-involved dioxygen activation process. Compared to the limited electronic selectivity (ES) of GR for •OH production (ES = 0.83%), GR-reduced HA improves the ES by an order of magnitude (ES = 8.4%). HA-involved dioxygen activation process expands the •OH generation interface from solid phase to aqueous phase, which is conducive to the degradation of TBP. This study not only deepens our understanding on the role of HA in •OH production during GR oxygenation, but also provides a promising approach for groundwater remediation under redox-fluctuating conditions.

9.
Front Microbiol ; 14: 1145915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275164

RESUMEN

The demonstration by Ivan Barnes et al. that the serpentinization of fresh Alpine-type ultramafic rocks results in the exhalation of hot alkaline fluids is foundational to the submarine alkaline vent theory (AVT) for life's emergence to its 'improbable' thermodynamic state. In AVT, such alkaline fluids ≤ 150°C, bearing H2 > CH4 > HS--generated and driven convectively by a serpentinizing exothermic mega-engine operating in the ultramafic crust-exhale into the iron-rich, CO2> > > NO3--bearing Hadean ocean to result in hydrothermal precipitate mounds comprising macromolecular ferroferric-carbonate oxyhydroxide and minor sulfide. As the nanocrystalline minerals fougerite/green rust and mackinawite (FeS), they compose the spontaneously precipitated inorganic membranes that keep the highly contrasting solutions apart, thereby maintaining redox and pH disequilibria. They do so in the form of fine chimneys and chemical gardens. The same disequilibria drive the reduction of CO2 to HCOO- or CO, and the oxidation of CH4 to a methyl group-the two products reacting to form acetate in a sequence antedating the 'energy-producing' acetyl coenzyme-A pathway. Fougerite is a 2D-layered mineral in which the hydrous interlayers themselves harbor 2D solutions, in effect constricted to ~ 1D by preferentially directed electron hopping/tunneling, and proton Gröthuss 'bucket-brigading' when subject to charge. As a redox-driven nanoengine or peristaltic pump, fougerite forces the ordered reduction of nitrate to ammonium, the amination of pyruvate and oxalate to alanine and glycine, and their condensation to short peptides. In turn, these peptides have the flexibility to sequester the founding inorganic iron oxyhydroxide, sulfide, and pyrophosphate clusters, to produce metal- and phosphate-dosed organic films and cells. As the feed to the hydrothermal mound fails, the only equivalent sustenance on offer to the first autotrophs is the still mildly serpentinizing upper crust beneath. While the conditions here are very much less bountiful, they do offer the similar feed and disequilibria the survivors are accustomed to. Sometime during this transition, a replicating non-ribosomal guidance system is discovered to provide the rules to take on the incrementally changing surroundings. The details of how these replicating apparatuses emerged are the hard problem, but by doing so the progenote archaea and bacteria could begin to colonize what would become the deep biosphere. Indeed, that the anaerobic nitrate-respiring methanotrophic archaea and the deep-branching Acetothermia presently comprise a portion of that microbiome occupying serpentinizing rocks offers circumstantial support for this notion. However, the inescapable, if jarring conclusion is drawn that, absent fougerite/green rust, there would be no structured channelway to life.

10.
Environ Sci Technol ; 57(25): 9376-9384, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37319326

RESUMEN

Green rust (GR), a layered double hydroxide (LDH) containing Fe, and magnetite can be found in natural and engineered environments. The ability of chloride GR (GR-Cl) and magnetite to retain iodide as a function of various parameters was investigated. Sorption equilibrium is achieved within 1 day of contact time between iodide and preformed GR-Cl in suspension. pHm variations (7.5-8.5) have no significant influence, but the iodide sorption decreases with increasing ionic strength set by NaCl. Sorption isotherms of iodide suggest that the uptake operates via ionic exchange (IC), which is supported by geochemical modeling. The short-range binding environment of iodide associated with GR is comparable to that of hydrated aqueous iodide ions in solution and is not affected by pHm or ionic strength. This finding hints at an electrostatic interaction with the Fe octahedral sheet, consistent with weak binding of charge balancing anions within an LDH interlayer. The presence of sulfate anions in significant amounts inhibits the iodide uptake due to recrystallization to a different crystal structure. Finally, the transformation of iodide-bearing GR-Cl into magnetite and ferrous hydroxide resulted in a quantitative release of iodide into the aqueous phase, suggesting that neither transformation product has an affinity for this anionic species.


Asunto(s)
Cloruros , Óxido Ferrosoférrico , Óxido Ferrosoférrico/química , Cloruros/química , Yoduros , Hidróxidos
11.
Environ Sci Technol ; 57(27): 10008-10018, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37364169

RESUMEN

Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/química , Suelo , Espectroscopía de Mossbauer , Oxidación-Reducción , Minerales/química
12.
Environ Sci Technol ; 57(22): 8396-8405, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37221677

RESUMEN

Batch kinetic experiments are combined with X-ray absorption spectroscopy (XAS) to compare the sorption of Mn(II), Co(II), Ni(II), Zn(II), and Cd(II) with sulfated green rust (GR) in anoxic pre-equilibrated suspensions at pH 8 over a timespan of 1 h to 1 week. The XAS data suggest that all five divalent metals coordinate at Fe(II) sites of the GR sorbent, whereas the batch results show that GR exhibits bimodal sorption behavior, with fast but limited uptake of Mn(II) and Cd(II) and much more extensive sorption of Co(II), Ni(II), and Zn(II) that continues throughout the entire experimental timeframe. We attribute these observations to differences in the affinity and extent of divalent metal substitution in Fe(II) sites of the GR lattice as controlled by ionic size. Divalent metals smaller than Fe(II) [i.e., Co(II), Ni(II), and Zn(II)] are readily accommodated and undergo coprecipitation during GR dissolution-reprecipitation. In contrast, divalent metals larger than Fe(II) [i.e., Mn(II) and Cd(II)] have a low affinity for substitution and remain coordinated at the surface following limited exchange with Fe(II)(s) at GR particle edges. These results imply that GR may strongly affect the solubility of Co(II), Ni(II), and Zn(II) in reducing geochemical systems but will have little impact on the retention of Cd(II) and Mn(II).


Asunto(s)
Cadmio , Sulfatos , Zinc , Compuestos Ferrosos
13.
Sci Total Environ ; 868: 161496, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36642274

RESUMEN

Green rust (GR) minerals are generally considered to be effective reductants of pollutants and the electron transfer from aqueous Fe(II) to structural Fe(III) in montmorillonite has recently been discovered to be a pathway to GR formation at pH ∼7.8. In this study, we have further delineated the pH conditions and examined the effect of aqueous sulfate concentrations that allow for the formation of sulfate-GR through this unique pathway. Iron(II) sorption experiments demonstrated that the amount of 'sorbed' Fe(II) on montmorillonite semi-quantitatively transformed into sulfate-GR at pH values ≥7.5 in the presence of environmentally-relevant sulfate concentrations (i.e., 10 mM). However, excess sulfate concentrations (100 mM) resulted in comparatively less Fe(II) sorption and sulfate-GR was only observed to form at pH 8. As such, it was concluded that the degree of Fe(II) sorption to montmorillonite is critical to GR formation when aqueous Fe(II) and montmorillonite co-exist. In contrast to sulfate-GR minerals formed through other pathways (e.g., co-precipitation of dissolved Fe(II) and Fe(III) species), this montmorillonite-synthesized GR was significantly less reactive towards nitrate reduction, with <2.5 % of 0.2 mM nitrate being reduced over a 6-day period. This behaviour was correlated to reduction potential and it was, therefore, concluded that the relatively high reduction potential that occurs in the presence of montmorillonite exerts a significant influence on the rate of nitrate reduction by sulfate-GR to the point that it may not be a competitive process to microbiological nitrate denitrification. As such, the environmental relevance of green rust to nitrate reduction cannot be inferred simply by its presence, but rather the reduction potential of the environmental system in which it is found.

14.
Geochem Trans ; 23(1): 3, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580177

RESUMEN

In this study, we investigated Ni2+, Zn2+, and Co2+ mineralogical incorporation and its effect on green rust transformation to magnetite. Mineral transformation experiments were conducted by heating green rust suspensions at 85 °C in the presence of Ni2+, Zn2+, or Co2+ under strict anoxic conditions. Transmission electron microscopy and powder X-ray diffraction showed the conversion of hexagonal green rust platelets to fine grained cubic magnetite crystals. The addition of Ni2+, Zn2+, and Co2+ resulted in faster rates of mineral transformation. The conversion of green rust to magnetite was concurrent to significant increases in metal uptake, demonstrating a strong affinity for metal sorption/co-precipitation by magnetite. Dissolution ratio curves showed that Ni2+, Zn2+, and Co2+ cations were incorporated into the mineral structure during magnetite crystal growth. The results indicate that the transformation of green rust to magnetite is accelerated by metal impurities, and that magnetite is a highly effective scavenger of trace metals during mineral transformation. The implications for using diagenetic magnetite from green rust precursors as paleo-proxies of Precambrian ocean chemistry are discussed.

15.
J Environ Manage ; 324: 116344, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36166867

RESUMEN

In this study, the 3-mercaptopropionic acid (MA) was chosen to achieve the anionic intercalation into the green rust (GR) materials (MA-GR). The zeolite-rich tuff functionalized with the MA-intercalated GR (MA-GR-tuff) was subsequently synthesized and used to remove both HgII cations and CrVI anions in a binary system. MA-GR-tuff showed the best adsorption capacities to both HgII and CrVI among the adsorbent materials. The optimal combination of parameters was determined as the molar ratio of FeII to FeIII of 3.5, the molar ratio of OH- to the total iron of 3.75, the molar ratio of MA to the total iron of 2.5, and the mass ratio of the total iron to the tuff of 1.25. The pseudo-first-order kinetic model was appropriate in describing the kinetic sorption of CrVI by MA-GR-tuff. Both the pseudo-first-order kinetic model and Elovich were suitable for explaining HgII sorption. The maximum monolayer adsorption capacities of MA-GR-tuff towards CrVI and HgII were 185.19 mg/g and 72.99 mg/g, respectively. More flocs and plumes were formed in the MA-GR while the intercalation and more pores and crevices of different sizes were found in the MA-GR-tuff. Sulfhydryl complexation and the molecular sieve of tuff obviously both played a role in influencing the adsorption process. This study directly overcomes the drawback brought by the natural tuff to the treatment of a cationic-and-anionic binary system and supplies a new kind of tuff-based adsorbent for the potential use for the remediation of HM-contaminated wastewater.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Zeolitas , Ácido 3-Mercaptopropiónico , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cromo/análisis , Adsorción , Hierro , Cinética , Aniones , Cationes , Contaminantes Químicos del Agua/análisis
16.
Water Res ; 222: 118959, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964514

RESUMEN

The groundwater environment often undergoes the transition from anoxic to oxic due to natural processes or human activities, but the influence of this transition on the fate of groundwater contaminates are not entirely understood. In this work, the degradation of tribromophenol (TBP) in the presence of environmentally relevant iron (oxyhydr)oxides (green rust, GR) and trace metal ions Cu(II) under anoxic/oxic-alternating conditions was investigated. Under anoxic conditions, GR-Cu(II) reduced TBP to 4-BP completely within 7 h while GR only had an adsorption effect on TBP. Under oxic conditions, GR-Cu(II) could generate •OH via dioxygen activation, which resulted in the oxidative transformation of TBP. Sixty-five percentage of TBP mineralization was achieved via a sequential reduction-oxidation process, which was not achieved through single reduction or oxidation process. The produced Cu(I) in GR-Cu(II) enhanced not only the reductive dehalogenation under anoxic conditions, but also the O2 activation under oxic conditions. Thus, the fate of TBP in anoxic/oxic-alternating groundwater environment is greatly influenced by the presence of GR-Cu(II). The sequential reduction-oxidation degradation of TBP by GR-Cu(II) is promising for future remediation of TBP-contaminated groundwater.


Asunto(s)
Cobre , Hierro , Adsorción , Humanos , Oxidación-Reducción , Óxidos
17.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458045

RESUMEN

Layered double hydroxides (LDHs) constitute a unique group of 2D materials that can deliver exceptional catalytic, optical, and electronic performance. However, they usually suffer from low stability compared to their oxide counterparts. Using density functional calculations, we quantitatively demonstrate the crucial impact of the intercalants (i.e., water, lactate, and carbonate) on the stability of a series of common LDHs based on Mn, Fe, and Co. We found that intercalation with the singly charged lactate results in higher stability in all these LDH compounds, compared to neutral water and doubly charged carbonate. Furthermore, we show that the dispersion effect aids the stability of these LDH compounds. This investigation reveals that certain intercalants enhance LDH stability and alter the bandgap favourably.

18.
Environ Pollut ; 304: 119205, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341820

RESUMEN

In recent years, the application of green rusts (GRs) for water purification has received significant attention, but its full understanding has not been well achieved. Then, the comprehension about the synthesis and characteristics of GRs can highly favor their decontamination performances for the site-specific conditions. This review comprehensively summarized the synthesis, characteristics and performances of GRs including the GR (Cl-), GR (CO32-) and GR (SO42-) for sequestration of various aqueous pollutants (e.g., tetrachloride, Cr(VI), Se(VI), and U(VI), etc.). Generally, the different reactivity of GRs toward contaminants is strongly dependent on the GRs' characteristics (e.g., interlayer distance, specific surface area, and Fe(II) content) and solution chemistry (e.g., pH, background electrolytes, dissolved oxygen, and contaminant concentration, etc.). In addition, the reaction mechanisms of GRs with the contaminants involve the redox reactions, adsorption, catalytic oxidation, interlayer and octahedral incorporation, which can mutually or singly contribute to the decontamination to varying degrees. Particularly, this review addressed the transformation pathways of GRs under various solution chemistry conditions and clarified that the stability of GRs should be the key challenge for the real application. Finally, how to effectively use the GRs for water decontamination was proposed, which will significantly benefit the rational control of environmental pollution.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Descontaminación , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis
19.
Water Res ; 213: 118159, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172259

RESUMEN

Removing dissolved selenium (i.e., selenate and selenite) from wastewater is a challenging issue for a range of industries. Iron electrocoagulation can produce Fe(II)-containing solids that can adsorb and chemically reduce dissolved Se. In a series of bench-scale experiments we investigated the effects of dissolved oxygen (fully oxic, partially oxic, and strictly anoxic) and pH (6 and 8) on the rate and extent of dissolved selenate and selenite removal by iron electrocoagulation. These studies combined measurements of the aqueous phase with the direct characterization of the resulting solids. Among the conditions studied the rate and extent of dissolved selenium (Se) removal were highest at pH 8 and strictly anoxic conditions. X-ray absorption spectroscopy demonstrated that in the absence of oxygen, Se was primarily transformed to elemental selenium (Se0) and selenide. Green rust that formed in the suspension during electrocoagulation played a key role as a reductant and sorbent of Se. At pH 6 dissolved oxygen did not affect the rates and extents of dissolved Se removal. Under all the conditions studied, dissolved Se removal was more effective with iron electrocoagulation than with the direct addition of pre-synthesized green rust or ferrous hydroxide. The most rapid and substantial dissolved Se removal was achieved by freshly-formed green rust and ferrous hydroxide, which are both Fe(II)-bearing solids. With an improved understanding of the products and mechanisms of the process, iron electrocoagulation can be optimized for removal of Se from wastewater.

20.
Sci Total Environ ; 824: 153825, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35157856

RESUMEN

Carbonous materials were found to catalyze the dechlorination of trichloroethylene (TCE) by green rust (GR), but the catalytic mechanism was not fully understood. We have developed a facile ball milling method to synthesize N-doped graphene (NG) with various N species, catalyzing fast dechlorination of TCE to acetylene by GR with the highest acetylene production rate of ~0.1 d-1. The adsorption of TCE onto NG is mainly derived from the graphene region of NG, and high pyridinic N is essential for the enhanced TCE reduction by GR. Oxygen species did not enhance the TCE reduction in GR/NG system. High dechlorination rates are correlated to a high amount of defect in NG and a high electron conductivity of NG. Pyridinic N has the highest adsorption energy for TCE among all the N species, which leads to the highest catalytic performance. High electrochemically active surface area resulted from the high content of pyridinic N facilitate the NG-catalyzed dechlorination. The acetylene production rate in real groundwater is still around one-third of that in ultrapure water. This work not only reveals the catalytic mechanism of NG-catalyzed dechlorination by GR, but also provide a feasible approach for practical remediations of TCE-contaminated groundwater using GR-NG mixture.


Asunto(s)
Grafito , Agua Subterránea , Tricloroetileno , Acetileno , Agua Subterránea/química , Hierro/química , Nitrógeno , Tricloroetileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...