Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros












Intervalo de año de publicación
1.
Plant Divers ; 46(2): 158-168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38807913

RESUMEN

Sexual systems play important roles in angiosperm evolution and exhibit substantial variations among different floras. Thus, studying their evolution in a whole flora is crucial for understanding the formation and maintenance of plant biodiversity and predicting its responses to environmental change. In this study, we determined the patterns of plant sexual systems and their associations with geographic elements and various life-history traits in dry-hot valley region of southwestern China, an extremely vulnerable ecosystem. Of the 3166 angiosperm species recorded in this area, 74.5% were hermaphroditic, 13.5% were monoecious and 12% were dioecious, showing a high incidence of diclinous species. Diclinous species were strongly associated with tropical elements, whereas hermaphroditic species were strongly associated with temperate and cosmopolitan elements. We also found that hermaphroditism was strongly associated with showy floral displays, specialist entomophily, dry fruits and herbaceous plants. Dioecy was strongly associated with inconspicuous, pale-colored flowers, generalist entomophily, fleshy fruits, and woody plants, whereas monoecy was strongly associated with inconspicuous, pale-colored flowers, anemophily, dry fruits, and herbaceous plants. In addition, hermaphroditic species with generalist entomophily tended to flower in the dry season, whereas diclinous species with specialist entomophily tended to flower in the rainy season. However, independent of sexual systems, plants that produce dry fruits tended to flower in the rainy season and set fruits in the dry season, but the opposite pattern was found for fleshy fruit-producing plants. Our results suggest that in the dry-hot valleys, plant sexual systems are associated with geographic elements as well as various life-history traits that are sensitive to environmental change.

2.
Ecol Appl ; 34(4): e2976, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685864

RESUMEN

Biomass allocation in plants is the foundation for understanding dynamics in ecosystem carbon balance, species competition, and plant-environment interactions. However, existing work on plant allometry has mainly focused on trees, with fewer studies having developed allometric equations for grasses. Grasses with different life histories can vary in their carbon investment by prioritizing the growth of specific organs to survive, outcompete co-occurring plants, and ensure population persistence. Further, because grasses are important fuels for wildfire, the lack of grass allocation data adds uncertainty to process-based models that relate plant physiology to wildfire dynamics. To fill this gap, we conducted a greenhouse experiment with 11 common California grasses varying in photosynthetic pathway and growth form. We measured plant sizes and harvested above- and belowground biomass throughout the life cycle of annual species, while for the establishment stage of perennial grasses to quantify allometric relationships for leaf, stem, and root biomass, as well as plant height and canopy area. We used basal diameter as a reference measure of plant size. Overall, basal diameter is the best predictor for leaf and stem biomass, height, and canopy area. Including height as another predictor can improve model accuracy in predicting leaf and stem biomass and canopy area. Fine root biomass is a function of leaf biomass alone. Species vary in their allometric relationships, with most variation occurring for plant height, canopy area, and stem biomass. We further explored potential trade-offs in biomass allocation across species between leaf and fine root, leaf and stem, and allocation to reproduction. Consistent with our expectation, we found that fast-growing plants allocated a greater fraction to reproduction. Additionally, plant height and specific leaf area negatively influenced the leaf-to-stem ratio. However, contrary to our hypothesis, there were no differences in root-to-leaf ratio between perennial and annual or C4 and C3 plants. Our study provides species-specific and functional-type-specific allometry equations for both above- and belowground organs of 11 common California grass species, enabling nondestructive biomass assessment in California grasslands. These allometric relationships and trade-offs in carbon allocation across species can improve ecosystem model predictions of grassland species interactions and environmental responses through differences in morphology.


Asunto(s)
Biomasa , Poaceae , Poaceae/fisiología , California , Clima , Modelos Biológicos
3.
Ecology ; 105(6): e4308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629131

RESUMEN

The recent availability of open-access repositories of functional traits has revolutionized trait-based approaches in ecology and evolution. Nevertheless, the underrepresentation of tropical regions and lineages remains a pervasive bias in plant functional trait databases, which constrains large-scale assessments of plant ecology, evolution, and biogeography. Here, we present MelastomaTRAITs 1.0, a comprehensive and updatable database of functional traits for the pantropical Melastomataceae, the ninth-largest angiosperm family with 177 genera and more than 5800 species. Melastomataceae encompass species with a wide diversity of growth forms (herbs, shrubs, trees, epiphytes, and woody climbers), habitats (including tropical forests, savannas, grasslands, and wetlands from sea level to montane areas above the treeline), ecological strategies (from pioneer, edge-adapted and invasive species to shade-tolerant understory species), geographic distribution (from microendemic to continental-wide distribution), reproductive, pollination, and seed dispersal systems. MelastomaTRAITs builds on 581 references, such as taxonomic monographs, ecological research, and unpublished data, and includes four whole-plant traits, six leaf traits, 11 flower traits, 18 fruit traits, and 27 seed traits for 2520 species distributed in 144 genera across all 21 tribes. Most data come from the Neotropics where the family is most species-rich. Miconieae (the largest tribe) contains the highest number of trait records (49.6%) and species (41.1%) records. The trait types with the most information in the database were whole-plant traits, flowers, and leaf traits. With the breadth of functional traits recorded, our database helps to fill a gap in information for tropical plants and will significantly improve our capacity for large-scale trait-based syntheses across levels of organization, plant-animal interactions, regeneration ecology, and thereby support conservation and restoration programs. There are no copyright restrictions on the dataset; please cite this data paper when reusing the data.


Asunto(s)
Bases de Datos Factuales , Melastomataceae , Ecosistema , Melastomataceae/fisiología , Melastomataceae/genética
4.
Oecologia ; 205(1): 81-94, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38687376

RESUMEN

The ability of non-native species to successfully invade new ecosystems sometimes involves evolutionary processes such as hybridization. Hybridization can produce individuals with superior traits that give them a competitive advantage over their parent species, allowing for rapid spread. Here we assess growth, functional morphology, and species interactions between two non-native beachgrass species (Ammophila arenaria and A. breviligulata) and their recently discovered hybrid (A. arenaria × A. breviligulata) on the U.S. Pacific Northwest coast. We asked whether the hybrid beachgrass differs from its parent species in morphology and growth, whether it competes with its parent species, and, if so, what are the potential mechanisms of competition. Plant taxa were grown in low- and high-density monocultures and in two-way interactions in a common garden environment. We show that the hybrid grew taller and more densely, with greater total biomass, than either parent species. The hybrid was also the better competitor, resulting in the model prediction of competitive exclusion against A. breviligulata and, depending on its relative abundance, A. arenaria. The hybrid displays a mixed 'guerilla-phalanx' growth form that allows it to spread laterally and achieve high shoot densities, giving it a competitive advantage. Given the current dominance of A. breviligulata compared to A. arenaria in most of the region where these taxa co-occur, we suggest that the hybrid will grow, compete, and spread quickly with potentially widespread consequences for the two non-native Ammophila congeners and the dunes they build.


Asunto(s)
Hibridación Genética , Especies Introducidas , Ecosistema , Biomasa
5.
Ecol Evol ; 14(3): e11145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469041

RESUMEN

Leaf traits are good indicators of ecosystem functioning and plant adaptations to environmental conditions. We examined whether leaf trait variability at species and community levels in Mediterranean woody vegetation is explained by growth form, regeneration mode, and vegetation type. We studied several plant communities across five vegetation types - semi-closed forest, open forest, closed shrubland, open shrubland, and scrubland - in southwestern Anatolia, Türkiye. Using linear mixed models, community-weighted trait means, and principal component analysis, we tested how much variability in three leaf traits (specific leaf area, leaf thickness, and leaf area) is accounted for species, growth form, regeneration mode, and vegetation type. Despite a large amount of leaf trait variability both within- and among-species existed, functional groups still accounted for a significant part of this variability. Resprouters had higher SLA and leaf area and lower leaf thickness than non-resprouters. However, further functional separation in regeneration mode, by considering the propagule-persistence trait and the seed bank locality, explained leaf trait variability better than only resprouting ability. Although no consistent pattern was observed in three leaf traits in the growth form, we found evidence for the difference in SLA and leaf thickness between shrubs and large shrubs, and subshrubs had smaller leaves than other growth forms. Vegetation type also accounted for a substantial amount of leaf trait variability. Specifically, plant communities in closed habitats had larger leaf area than open ones, and those in scrublands had higher SLA, lower leaf thickness, and lower leaf area than other vegetation types. Climate and phylogeny had limited contribution to the results obtained, with the exception of a significant phylogenetic effect in explaining the differences in SLA between resprouters and non-resprouters. Our results suggest that multiple drivers are responsible for shaping plant trait variability in Mediterranean plant communities, including growth form, regeneration mode, and vegetation type.

6.
Am J Bot ; 111(3): e16290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38380953

RESUMEN

PREMISE: Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS: We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS: Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS: These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.


Asunto(s)
Árboles , Xilema , Fenómenos Biomecánicos , Agua , Celulosa , Almidón , Azúcares
7.
Ecol Lett ; 27(1): e14364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225803

RESUMEN

Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.


Asunto(s)
Plantas , Suelo , Microbiología del Suelo , Simbiosis , Retroalimentación
8.
Ecology ; 105(3): e4194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37882101

RESUMEN

A major restriction in predicting plant community response to future climate change is a lack of long-term data needed to properly assess species and community response to climate and identify a baseline to detect climate anomalies. Here, we use a 106-year dataset on a Sonoran Desert plant community to test the role of extreme temperature and precipitation anomalies on community dynamics at the decadal scale and over time. Additionally, we tested the climate sensitivity of 39 desert plant species and whether sensitivity was associated with growth form, longevity, geographic range, or local dominance. We found that desert plant communities had shifted directionally over the 106 years, but the climate had little influence on this directional change primarily due to nonlinear shifts in precipitation anomalies. Decadal-scale climate had the largest impact on species richness, species relative density, and total plant cover, explaining up to 26%, 45%, and 55% of the variance in each, respectively. Drought and the interaction between the frequency of freeze events and above-average summer precipitation were among the most influential climate factors. Increased drought frequency and wetter periods with frequent freeze events led to larger reductions in total plant cover, species richness, and the relative densities of dominant subshrubs Ambrosia deltoidea and Encelia farinosa. More than 80% of the tested species were sensitive to climate, but sensitivity was not associated with a species' local dominance, longevity, geographic range, or growth form. Some species appear to exhibit demographic buffering, where when they have a higher sensitivity to drought, they also tend to have a higher sensitivity to favorable (i.e., wetter and hotter) conditions. Overall, our results suggest that, while decadal-scale climate variation substantially impacts these desert plant communities, directional change in temperature over the last century has had little impact due to the relative importance of precipitation and drought. With projections of increased drought in this region, we may see reductions in total vegetation cover and species richness due to the loss of species, possibly through a breakdown in their ability to demographically buffer climatic variation, potentially changing community dynamics through a change in facilitative and competitive processes.


Asunto(s)
Clima Desértico , Plantas , Calor , Temperatura , Estaciones del Año
10.
PeerJ ; 11: e16689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144198

RESUMEN

Background: During a study on the outdoor floating leaf blade production of Nymphoides peltata (S.G. Gmel.) O. Kuntze (Fringed Water Lily), initial leaf blade decomposition was studied by simultaneously measuring infected, damaged and lost area of floating leaf blades. Methods: Data on initial decomposition over time were collected for all leaves during one growth season in four plots: two in outdoor mesocosms and two in an oxbow lake. Each leaf was tagged uniquely upon appearance in a plot. The vegetation in the mesocosms differed with respect to plant species, one contained a monoculture of N. peltata and the other N. peltata associated with Glyceria fluitans (L.) R. Br. and G. maxima (Hartm.) Holmb. The lake plots were situated within a monospecific N. peltata stand, differing in depth and position within the stand. Leaf length, visually estimated percentages of damaged area for each damage type, and decay of the tagged leaves were recorded bi-weekly. When the leaf blades sunk under the water surface or disappeared completely, they were no longer followed. Under water the leaves decayed and were consumed by snails completely, so contributing to the detritus food chain. Results: The observed causes of damage on floating leaves were consumption and/or damage by waterbirds (Fulica atra), pond snails, caterpillars (Elophila nymphaeata, Cataclysta lemnata), chironomid larvae (Cricotopus trifasciatus), infection by a phytopathogenic fungus (Septoria villarsiae), senescence by autolysis, and microbial decay. Successional changes in causes of leaf decomposition and impacts of different causes are discussed.


Asunto(s)
Magnoliopsida , Hojas de la Planta , Plantas , Poaceae , Agua
11.
Front Plant Sci ; 14: 1266798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034582

RESUMEN

Although variation in seed mass can be attributed to other plant functional traits such as plant height, leaf size, genome size, growth form, leaf N and phylogeny, until now, there has been little information on the relative contributions of these factors to variation in seed mass. We compiled data consisting of 1071 vascular plant species from the literature to quantify the relationships between seed mass, explanatory variables and phylogeny. Strong phylogenetic signals of these explanatory variables reflected inherited ancestral traits of the plant species. Without controlling phylogeny, growth form and leaf N are associated with seed mass. However, this association disappeared when accounting for phylogeny. Plant height, leaf area, and genome size showed consistent positive relationship with seed mass irrespective of phylogeny. Using phylogenetic partial R2s model, phylogeny explained 50.89% of the variance in seed mass, much more than plant height, leaf area, genome size, leaf N, and growth form explaining only 7.39%, 0.58%, 1.85%, 0.06% and 0.09%, respectively. Therefore, future ecological work investigating the evolution of seed size should be cautious given that phylogeny is the best overall predictor for seed mass. Our study provides a novel avenue for clarifying variation in functional traits across plant species, improving our better understanding of global patterns in plant traits.

12.
PeerJ ; 11: e16442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025692

RESUMEN

Lichens host highly complex and diverse microbial communities, which may perform essential functions in these symbiotic micro-ecosystems. In this research, sequencing of 16S rRNA was used to investigate the bacterial communities associated with lichens of two growth forms (foliose and crustose). Results showed that Pseudomonadota, Actinomycetota and Acidobacteriota were dominant phyla in both types of lichens, while Acetobacterales and Hyphomicrobiales were the dominant orders. Alpha diversity index showed that the richness of bacteria hosted by foliose lichens was significantly higher than that hosted by crustose ones. Principal co-ordinates analysis showed a significant difference between beta diversity of the foliose lichen-associated bacterial communities and those of crustose lichen-associated ones. Gene function prediction showed most functions, annotated by the lichen-associated bacteria, to be related to metabolism, suggesting that related bacteria may provide nutrients to their hosts. Generally, our results propose that microbial communities play important roles in fixing nitrogen, providing nutrients, and controlling harmful microorganisms, and are therefore an integral and indispensable part of lichens.


Asunto(s)
Líquenes , Microbiota , Líquenes/genética , Beijing , ARN Ribosómico 16S/genética , Bacterias/genética
13.
Front Plant Sci ; 14: 1276699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860242

RESUMEN

Halophytes play a crucial role in the ecological restoration of saline and alkaline land and hold promising benefits to food security in China. Although a variety of aspects of halophytes have been extensively addressed, there is still a lack of overall understanding of the leaf nitrogen (N) and phosphorus (P) stoichiometric characteristics, especially at a national scale. We compiled a national dataset of 311 observations from 113 sampling sites across China to explore the changing trends and influencing factors on leaf N and P concentrations, and N:P ratio of halophytes. The results showed that leaf N concentration decreased significantly with increasing latitude (LAT), which was mainly driven by the mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf P concentration increased remarkably with increasing longitude (LON), which was induced by the variation in soil total P (TP) content. The leaf N:P ratio increased as LAT increased and LON decreased, which was potentially regulated by the MAT, MAP, and soil TP content. The scaling exponents of the N-P relationship differed significantly among halophyte types and were 0.40, 0.87, and 1.39 for euhalophyte, pseudohalophyte, and recretohalophyte, respectively. The leaf N concentration exhibited significant differences among ecosystem types and halophyte types, whereas the leaf P concentration and N:P ratio remained relatively stable. In summary, the leaf N concentration and N-P scaling exponent might be the classification criteria for halophyte types from the perspective of plant nutrient resource allocation. Moreover, this study characterized the spatial distribution and allocation strategy of leaf N and P stoichiometry in halophytes by data integration analysis, providing the basic information for nutrient management in the processes of the future domestication and introduction of halophytes.

14.
Stress Biol ; 3(1): 43, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812262

RESUMEN

Wind is an environmental stimulus that stresses plants of all growth forms at all life-stages by influencing the development, architecture, and morphology of roots and shoots. However, comparative studies are scarce and no study directly investigated whether shoot and root morphological traits of trees, grasses and forbs differ in their response to short wind pulses of different wind intensity. In this study, we found that across species, wind stress by short wind pulses of increasing intensity consistently changed root morphology, but did not affect shoot morphological traits, except plant height in four species. Wind effects in roots were generally weak in tree species but consistent across growth forms. Furthermore, plant height of species was correlated with changes in specific root length and average diameter.Our results indicate that short-pulse wind treatments affect root morphology more than shoot morphology across growth forms. They further suggest that wind stress possibly promotes root anchorage in young plants and that these effects might depend on plant height.

15.
PeerJ ; 11: e15557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483965

RESUMEN

The Cyclanthaceae comprise a relatively small family of about 230 species and 12 genera in the Pandanales that is widespread in wet Neotropical forests. The great majority of species can be divided into three growth forms (understory herbs, epiphytes, and root-climbing hemiepiphytes) that share functional traits with similar growth forms present in the Araceae, a member of the Alismatales and not closely related. Our objectives were first to characterize the diversity, functional growth forms, and ecological traits of Cyclanthaceae at the La Selva Biological Station. Specific functional leaf and canopy traits of terrestrial herbs and epiphytes are very similar and associated with ecological success in both families. We further examined the functional traits of root-climbing hemiepiphytes, a specialized growth form that links the two families but rare in other families and argue that their specialized functional traits allow them to be considered as a distinct functional growth form. A key trait in distinguishing hemiepiphytes which are rare outside of the Cyclanthaceae and Araceae is the severance of the main stem hydraulic connection to the soil early in plant development. We used field data to examine the possible evolutionary pathways of developmental and ecological transition from terrestrial to hemiepiphyte growth forms. The broader ecological success of hemiepiphytic Araceae compared to Cyclanthaceae is hypothesized to result from the presence of heteroblasty in developing stems and leaves which allows more efficient utilization of complex canopy light environments of wet tropical forests.


Asunto(s)
Araceae , Árboles , Bosques
16.
AoB Plants ; 15(3): plad029, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37288427

RESUMEN

Different ecosystems evolved and are maintained by fire, with their vegetation hosting species with a wide diversity of persistence strategies allowing them to insulate their body and resprout new branches after fire disturbance. Changes in fire regime are predicted due to climate change, either by promoting more frequent and/or severe fires or by reducing the number of fire events due to the limitation of fuel load. Predicting the future of fire-driven ecosystems is a complex task as species' survival depends on many factors that vary in space and time. Since plants are constantly experiencing new environments as they grow through meristem development, woody plant modularity, modules morpho-physiological aspects and their integration should be considered when investigating species strategies in fire-prone ecosystems: according to their position and their tissue composition, plants' modules experience fire differently and will contribute differently to other modules and the whole plant survival, with consequences cascading over the overall vegetation structure. Growth modules may hold the key to understanding how fast plants can get protected from fire, ultimately helping us to predict which species will persist across changing fire regimes. We present an empirical example showing how different fire-return intervals translate into distinct pressures on the timing, protection and location of modules, and discuss how these can translate into modifications in the vegetation structure due to climate change.

17.
New Phytol ; 239(2): 452-455, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37312598

Asunto(s)
Árboles
18.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176864

RESUMEN

In the upper vegetation limit of the Andes, trees change to shrub forms or other life forms, such as low scrubs. The diversity of life forms decreases with elevation; tree life forms generally decrease, and communities of shrubs and herbs increase in the Andean highlands. Most of treeline populations in the northwestern Argentina Altiplano are monospecific stands of Polylepis tarapacana, a cold-tolerant evergreen species that is able to withstand harsh climatic conditions under different life forms. There are no studies for P. tarapacana that analyze life forms across environmental and human impact gradients relating them with environmental factors. This study aims to determine the influence of topographic, climatic, geographic and proxies to human uses on the occurrence of life forms in P. tarapacana trees. We worked with 70 plots, and a new proposal of tree life form classification was presented for P. tarapacana (arborescent, dwarf trees, shrubs and brousse tigrée). We describe the forest biometry of each life form and evaluate the frequency of these life forms in relation to the environmental factors and human uses. The results show a consistency in the changes in the different life forms across the studied environmental gradients, where the main changes were related to elevation, slope and temperature.

19.
Ecology ; 104(5): e4017, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882893

RESUMEN

Scleractinian corals are colonial animals with a range of life-history strategies, making up diverse species assemblages that define coral reefs. We tagged and tracked ~30 colonies from each of 11 species during seven trips spanning 6 years (2009-2015) to measure their vital rates and competitive interactions on the reef crest at Trimodal Reef, Lizard Island, Australia. Pairs of species were chosen from five growth forms in which one species of the pair was locally rare (R) and the other common (C). The sampled growth forms were massive (Goniastrea pectinata [R] and G. retiformis [C]), digitate (Acropora humilis [R] and A. cf. digitifera [C]), corymbose (A. millepora [R] and A. nasuta [C]), tabular (A. cytherea [R] and A. hyacinthus [C]) and arborescent (A. robusta [R] and A. intermedia [C]). An extra corymbose species with intermediate abundance, A. spathulata was included when it became apparent that A. millepora was too rare on the reef crest, making the 11 species in total. The tagged colonies were visited each year in the weeks prior to spawning. During visits, two or more observers each took two or three photographs of each tagged colony from directly above and on the horizontal plane with a scale plate to track planar area. Dead or missing colonies were recorded and new colonies tagged to maintain ~30 colonies per species throughout the 6 years of the study. In addition to tracking tagged corals, 30 fragments were collected from neighboring untagged colonies of each species for counting numbers of eggs per polyp (fecundity); and fragments of untagged colonies were brought into the laboratory where spawned eggs were collected for biomass and energy measurements. We also conducted surveys at the study site to generate size structure data for each species in several of the years. Each tagged colony photograph was digitized by at least two people. Therefore, we could examine sources of error in planar area for both photographers and outliners. Competitive interactions were recorded for a subset of species by measuring the margins of tagged colony outlines interacting with neighboring corals. The study was abruptly ended by Tropical Cyclone Nathan (Category 4) that killed all but nine of the more than 300 tagged colonies in early 2015. Nonetheless, these data will be of use to other researchers interested in coral demography and coexistence, functional ecology, and parametrizing population, community, and ecosystem models. The data set is not copyright restricted, and users should cite this paper when using the data.


Asunto(s)
Antozoos , Animales , Ecosistema , Arrecifes de Coral , Fertilidad , Demografía
20.
Sci Total Environ ; 854: 158802, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115397

RESUMEN

In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.


Asunto(s)
Sequías , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Agua/fisiología , Madera , Carbohidratos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...