Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Nutr ; 17: 87-99, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766518

RESUMEN

The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.

2.
Front Nutr ; 8: 786682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155513

RESUMEN

Regulation of gut microbiota and modulation of bile acid (BA) composition are potential strategies for the treatment of intestinal inflammation. This study aimed to investigate the effect of grape seed proanthocyanidin (GSP) on intestinal inflammation and to understand its mechanism. C57BL/6J male mice (7-8 weeks old) were used in experiments. Antibiotics were applied to deplete gut microbiota to evaluate the contribution of gut microbiota to the effect of dietary GSP. Intestinal-specific farnesoid X receptor (FXR) inhibitor was used to analyze the role of FXR signaling. In this study, GSP alleviated intestinal inflammation induced by LPS and altered the gut microbiota accompanied by increased abundance of hydroxysteroid dehydrogenase (HSD) producing microbes. GSP activated the intestinal FXR signaling pathway and increased gene expression of enzymes of the alternative BA synthetic pathway, which associated with elevated levels of chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in liver and feces. However, gut microbiota depletion by antibiotics removed those effects of GSP on mice injected with LPS. In addition, the protective effect of GSP on mice challenged with LPS was weakened by the inhibition of intestinal FXR signaling. Further, the mixture of CDCA and LCA mirrored the effects of GSP in mice injected with LPS, which might verify the efficiency of CDCA and LCA on intestinal inflammation. Taken together, our results indicated that GSP exerted an intestinal protection role in the inflammation induced by LPS, and these effects were mediated by regulating gut microbiota-BA crosstalk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...