Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777100

RESUMEN

Recent studies in Diffuse Midline Gliomas (DMG) demonstrated a strong connection between epigenome dysregulation and metabolic rewiring. Here, we evaluated the value of targeting a glycolytic protein named Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3 (PFKFB3) in H3.3K27M DMG. We observed that the viability of H3.3K27M cells is dramatically reduced by PFK15, a potent inhibitor of PFKFB3. Furthermore, PFKFB3 inhibition induced apoptosis and G2/M arrest. Interestingly, CRISPR-Knockout of the K27M mutant allele has a synergistic effect on the observed phenotype. Altogether, we identified PFKFB3 as a new target for H3.3K27M DMG, making PFK15 a potential candidate for future animal studies and clinical trials.


Asunto(s)
Glioma , Histonas , Fosfofructoquinasa-2 , Humanos , Glioma/metabolismo , Glioma/patología , Glioma/genética , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Niño , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Apoptosis , Mutación , Glucólisis/efectos de los fármacos
2.
Cell Rep ; 43(2): 113707, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306270

RESUMEN

Diffuse intrinsic pontine gliomas (DIPGs) are deadly pediatric brain tumors, non-resectable due to brainstem localization and diffusive growth. Over 80% of DIPGs harbor a mutation in histone 3 (H3.3 or H3.1) resulting in a lysine-to-methionine substitution (H3K27M). Patients with DIPG have a dismal prognosis with no effective therapy. We show that histone deacetylase (HDAC) inhibitors lead to a significant reduction in the H3.3K27M protein (up to 80%) in multiple glioma cell lines. We discover that the SB939-mediated H3.3K27M loss is partially blocked by a lysosomal inhibitor, chloroquine. The H3.3K27M loss is facilitated by co-occurrence of H2A.Z, as evidenced by the knockdown of H2A.Z isoforms. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis confirms the occupancy of H3.3K27M and H2A.Z at the same SB939-inducible genes. We discover a mechanism showing that HDAC inhibition in DIPG leads to pharmacological modulation of the oncogenic H3.3K27M protein levels. These findings show the possibility of directly targeting the H3.3K27M oncohistone.


Asunto(s)
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Histonas , Proteínas Mutantes , Glioma/genética , Neoplasias Encefálicas/genética , Inhibidores de Histona Desacetilasas/farmacología
3.
Mol Ther Oncolytics ; 30: 167-180, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37674626

RESUMEN

Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.

4.
Cancers (Basel) ; 14(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36230759

RESUMEN

H3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade glioma in adults. We found that H3.3K27M was highly expressed at high levels in some high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not affect the growth of glioma cells in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we confirmed that H3.3K27M overexpression increased the levels of the ß-catenin and p-ß-catenin (Ser675) proteins, the ubiquitin-specific protease 1 (USP1) mRNA and protein levels, and the enhancer of zeste homolog 2 (EZH2) protein level. In addition, the ß-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins and inhibited the increased migration and invasion caused by the H3.3K27M mutation. Overall, the H3.3K27M mutation in high-grade glioma is a potential biomarker for poor prognosis mainly due to the infiltration of glioma cells that is at least partially mediated by the ß-catenin/USP1/EZH2 pathway.

5.
Epigenetics Chromatin ; 15(1): 18, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590427

RESUMEN

BACKGROUND: The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well as their transcriptomic consequences. RESULTS: Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development pathways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-oncogenic K27M signaling pathway, in particular, ASCL1 and NEUROD1. CONCLUSIONS: Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene expression, which is at least partially reversible upon editing K27M back to wild-type.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Cromatina/genética , Glioma/genética , Glioma/metabolismo , Glioma/patología , Histonas/metabolismo , Mutación
6.
Front Oncol ; 12: 1104129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686810

RESUMEN

Pediatric high grade gliomas (HGG) are lethal tumors which are currently untreatable. A number of recent studies have provided much needed insights into the mutations and mechanisms which drive oncogenesis in pediatric HGGs. It is now clear that mutations in chromatin proteins, particularly H3.3 and its associated chaperone complex (ATRX), are a hallmark feature of pediatric HGGs. We review the current literature on the normal roles of the ATRX/H3.3 complex and how these functions are disrupted by oncogenic mutations. We discuss the current clinical trials and pre-clinical models that target chromatin and DNA, and how these agents fit into the ATRX/H3.3 mutation model. As chromatin mutations are a relatively new discovery in pediatric HGGs, developing clear mechanistic insights are a key step to improving therapies for these tumors.

7.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771714

RESUMEN

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

8.
Neurooncol Adv ; 3(1): vdab061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056608

RESUMEN

BACKGROUND: Diffuse hemispheric gliomas, H3 G34-mutant (DHG H3G34-mutant) constitute a distinct type of aggressive brain tumors. Although initially described in children, they can also affect adults. The aims of this study were to describe the characteristics of DHG H3G34-mutant in adults and to compare them to those of established types of adult WHO grade IV gliomas. METHODS: The characteristics of 17 adult DHG H3G34-mutant, 32 H3.3 K27M-mutant diffuse midline gliomas (DMG), 100 IDH-wildtype, and 36 IDH-mutant glioblastomas were retrospectively analyzed. RESULTS: Median age at diagnosis in adult DHG H3G34-mutant was 25 years (range: 19-33). All tumors were hemispheric. For 9 patients (56%), absent or faint contrast enhancement initially suggested another diagnosis than a high-grade glioma, and diffusion-weighted imaging seemed retrospectively more helpful to suspect an aggressive tumor than MR-spectroscopy and perfusion MRI. All cases were IDH-wildtype. Most cases were immunonegative for ATRX (93%) and Olig2 (100%) and exhibited MGMT promoter methylation (82%). The clinical and radiological presentations of adult DHG H3G34-mutant were different from those of established types of adult grade IV gliomas. Median overall survival of adult DHG H3G34-mutant was 12.4 months compared to 19.6 months (P = .56), 11.7 months (P = .45), and 50.5 months (P = .006) in H3.3 K27M-mutant DMG, IDH-wildtype, and IDH-mutant glioblastomas, respectively. CONCLUSIONS: Adult DHG H3G34-mutant are associated with distinct characteristics compared to those of established types of adult WHO grade IV gliomas. This study supports considering these tumors as a new type of WHO grade IV glioma in future classifications.

9.
Cancer Cell ; 39(3): 407-422.e13, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33545065

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/parasitología , Glioma/genética , Glioma/patología , Histonas/genética , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
10.
Adv Exp Med Biol ; 1283: 43-52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33155136

RESUMEN

Histones form chromatin and play a key role in the regulation of gene expression. As an epigenetic information form, histone modifications such as methylation, phosphorylation, acetylation, and ubiquitination are closely related to the regulation of genes. In the last two decades, cancer scientists discovered that some histone modifications, including acetylation and methylation, are perturbed in cancer diseases. Recurrent histone mutations, which hinder histone methylation and are implicated in oncogenesis, are recently identified in several cancer disease and called oncohistones. Well-known oncohistones, with mutations on both H3.1 and H3.3, include H3K36M in chondroblastoma, H3K27M in glioma, and H3G34 mutations that exist in bone cancers and gliomas. Oncohistone expression can lead to epigenome/transcriptome reprogramming and eventually to oncogenesis. The H3K27M, H3G34V/R, and H3K36M histone mutations can lead to the substitution of amino acid(s) at or near a lysine residue, which is a methylation target. H3K27M characteristically exists in diffuse intrinsic pontine glioma (pediatric DIPG), and its expression can cause a global decrease of the methylation of histone at the lysine residue. Uncovering the molecular mechanisms of H3K27M-driven tumorigenesis has recently led to the identification of some potential therapeutic targets in diffuse intrinsic pontine glioma. In this chapter, we will review and summarize recent studies on the H3K27M-driven tumorigenic mechanisms and properties and the role of H3.1K27M and H3.3K27M oncohistones in brain tumors.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Histonas/genética , Mutación , Neoplasias del Tronco Encefálico/genética , Cromatina , Glioma/genética , Humanos
11.
Cell Rep ; 33(7): 108390, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207202

RESUMEN

The discovery of H3K27M mutations in pediatric gliomas marked a new chapter in cancer epigenomics. Numerous studies have investigated the effect of this mutation on H3K27 trimethylation, but only recently have we started to realize its additional effects on the epigenome. Here, we use isogenic glioma H3K27M+/- cell lines to investigate H3K27 methylation and its interaction with H3K36 and H3K9 modifications. We describe a "step down" effect of H3K27M on the distribution of H3K27 methylation: me3 is reduced to me2, me2 is reduced to me1, whereas H3K36me2/3 delineates the boundaries for the spread of H3K27me marks. We also observe a replacement of H3K27me2/3 silencing by H3K9me3. Using a computational simulation, we explain our observations by reduced effectiveness of PRC2 and constraints imposed on the deposition of H3K27me by antagonistic H3K36 modifications. Our work further elucidates the effects of H3K27M in gliomas as well as the general principles of deposition in H3K27 methylation.


Asunto(s)
Glioma/genética , Histonas/genética , Histonas/metabolismo , Línea Celular Tumoral , Cromatina/genética , Metilación de ADN/genética , Epigenómica , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/metabolismo , Humanos , Lisina/metabolismo , Metionina/metabolismo , Metilación , Mutación/genética , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional
12.
Mol Cell ; 80(4): 726-735.e7, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33049227

RESUMEN

Diffuse midline gliomas and posterior fossa type A ependymomas contain the recurrent histone H3 lysine 27 (H3 K27M) mutation and express the H3 K27M-mimic EZHIP (CXorf67), respectively. H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo, these proteins reduce overall H3 lysine 27 trimethylation (H3K27me3) levels; however, residual peaks of H3K27me3 remain at CpG islands (CGIs) through an unknown mechanism. Here, we report that EZHIP and H3 K27M preferentially interact with PRC2 that is allosterically activated by H3K27me3 at CGIs and impede its spreading. Moreover, H3 K27M oncohistones reduce H3K27me3 in trans, independent of their incorporation into the chromatin. Although EZHIP is not found outside placental mammals, expression of human EZHIP reduces H3K27me3 in Drosophila melanogaster through a conserved mechanism. Our results provide mechanistic insights for the retention of residual H3K27me3 in tumors driven by H3 K27M and EZHIP.


Asunto(s)
Cromatina/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Mutación , Proteínas Oncogénicas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regulación Alostérica , Animales , Islas de CpG , Drosophila melanogaster , Humanos , Ratones , Proteínas Oncogénicas/genética , Complejo Represivo Polycomb 2/genética
13.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932419

RESUMEN

Expression of histone H3.3K27M mutant proteins in human diffuse intrinsic pontine glioma (DIPG) results in a global reduction of tri-methylation of H3K27 (H3K27me3), and paradoxically, H3K27me3 peaks remain at hundreds of genomic loci, a dichotomous change that lacks mechanistic insights. Here, we show that the PRC2 complex is sequestered at poised enhancers, but not at active promoters with high levels of H3.3K27M proteins, thereby contributing to the global reduction of H3K27me3. Moreover, the levels of H3.3K27M proteins are low at the retained H3K27me3 peaks and consequently having minimal effects on the PRC2 activity at these loci. H3K27me3-mediated silencing at specific tumor suppressor genes, including Wilms Tumor 1, promotes proliferation of DIPG cells. These results support a model in which the PRC2 complex is redistributed to poised enhancers in H3.3K27M mutant cells and contributes to tumorigenesis in part by locally enhancing H3K27me3, and hence silencing of tumor suppressor genes.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Histonas/genética , Proteínas del Grupo Polycomb/genética , Proteínas WT1/genética , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proliferación Celular , Reprogramación Celular , Elementos de Facilitación Genéticos , Epigenómica , Glioma/metabolismo , Glioma/patología , Histonas/metabolismo , Humanos , Metilación , Mutación , Neuroglía/metabolismo , Neuroglía/patología , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Proteínas WT1/metabolismo
14.
J Neurooncol ; 136(3): 555-563, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29196927

RESUMEN

Adult cerebellar glioblastomas (cGBM) are rare and their characteristics remain to be fully described. We analyzed the characteristics of 17 adult patients with cGBM and compared them to a series of 103 patients presenting a supra-tentorial glioblastoma (stGBM). The mean age at GBMc diagnosis was 53.4 years (range 28-77). A history of neurofibromatosis type I was noted in 3 patients. cGBM were hemispheric in 10 patients (58.8%), only vermian in 4 patients (23.5%), and both vermian and hemispheric in 3 patients (17.7%). A H3 K27M mutation was identified in 3/14 patients, a TERT promoter mutation in 3/14 patients and a methylated MGMT promoter in 3/14 patients. None of the patients (0/14) harbored an EGFR amplification, an IDH or a BRAF mutation. Association with neurofibromatosis type I and H3K27M mutations were mutually exclusive. Compared with stGBM, cGBM occurred in younger patients (53.4 vs. 63.2, p = 0.02), were more frequently associated with neurofibromatosis type I (18 vs. 1%, p = 0.009) and with a H3 K27M mutation (21 vs. 3%, p = 0.02). They also tended to have a more frequent multifocal presentation at diagnosis (21 vs. 4.3%, p = 0.06), more frequently resulted in leptomeningeal or intra-axial metastasis (44.5 vs. 5%, p = 0.002) and were associated with a shorter median overall survival (5.9 vs. 14.2 months, p = 0.004). The present study suggests that adult cGBM differ from their supra-tentorial counterpart and constitute a heterogeneous group of IDH wild-type gliomas with at least two subgroups, one associated with H3K27M mutations and the other with neurofibromatosis type I.


Asunto(s)
Neoplasias Cerebelosas/epidemiología , Glioblastoma/epidemiología , Adulto , Factores de Edad , Anciano , Neoplasias Cerebelosas/genética , Femenino , Estudios de Seguimiento , Glioblastoma/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neurofibromatosis 1/epidemiología , Estudios Retrospectivos , Neoplasias Supratentoriales/epidemiología , Neoplasias Supratentoriales/genética
15.
Biochem Biophys Res Commun ; 490(3): 868-875, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28647357

RESUMEN

Lysine 27 to methionine (K27 M) mutation of the histone variant H3.3 drives the formation of an aggressive glioblastoma multiforme tumor in infants. Here we analyzed how the methionine substitution alters the stability of H3.3 nucleosomes in vitro and modifies its kinetic properties in live cells. We also determined whether the presence of mutant nucleosomes perturbed the mobility of the PRC2 subunit Ezh2 (enhancer-of-zeste homolog 2). We found that K27 M nucleosomes maintained the wild-type molecular architecture both at the level of bulk histones and single nucleosomes and followed similar diffusion kinetics to wild-type histones in live cells. Nevertheless, we observed a remarkable differential recovery of Ezh2 in response to transcriptional stress that was accompanied by a faster diffusion rate of the mobile fraction of Ezh2 and a significantly increased immobile fraction, suggesting tighter chromatin binding of Ezh2 upon transcription inhibition. The differential recovery of Ezh2 was dependent on transcription, however, it was independent from K27 M mutation status. These biophysical characteristics shed more light on the mechanism of histone H3.3 K27M in glioma genesis in relation to the kinetic properties of Ezh2.


Asunto(s)
Histonas/genética , Mutación Puntual , Animales , Proteína Potenciadora del Homólogo Zeste 2/análisis , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glioblastoma/genética , Glioblastoma/metabolismo , Células HeLa , Histonas/análisis , Histonas/metabolismo , Humanos , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Activación Transcripcional , Xenopus laevis
16.
Neurotherapeutics ; 14(2): 274-283, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28233220

RESUMEN

Progress in the treatment of adult high-grade gliomas (HGG), including chemoradiation with concurrent and adjuvant temozolomide for glioblastoma, has not translated into significant therapeutic advances for pediatric HGG, where overall survival has plateaued at 15% to 20%, especially when considering specialized pediatric treatment in tertiary care centers, maximal safe neurosurgical resection, optimized delivery of involved field radiation, and improvements in supportive care. However, recent advances in our understanding of pediatric HGG, including the application of next-generation sequencing and DNA methylation profiling, have identified mutations in the histone variant H3.3 and canonical H3.1 genes, respectively. These mutations are relatively specific to neuroanatomic compartments (cortex, midline structures, thalamus, brainstem) and are often associated with other mutations, especially in specific growth factor receptor tyrosine kinases. Targeting epigenetic pathways affected by these histone mutations, alone or in combination with small molecule inhibitors of growth factor receptor signaling pathways, will inform new treatment strategies for pediatric HGG and should be incorporated into novel cooperative group clinical trial designs.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigénesis Genética , Glioma/genética , Glioma/terapia , Histonas/metabolismo , Adolescente , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Niño , Preescolar , Metilación de ADN , Glioma/metabolismo , Glioma/patología , Humanos , Mutación , Clasificación del Tumor
17.
Genes Dev ; 27(9): 985-90, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23603901

RESUMEN

Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ∼1 yr. Here we show that the levels of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransferase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover, the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Histonas/genética , Histonas/metabolismo , Mutación , Línea Celular Tumoral , Genoma Humano/genética , Glioma/fisiopatología , Humanos , Metilación , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...