Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
1.
Int J Angiol ; 33(3): 174-181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39131807

RESUMEN

Deep vein thrombosis (DVT) is a common postoperative complication of orthopaedic surgery with a complex pathogenesis mechanism. The effect of the miR-2467-3p/acting-binding LIM protein 1 (ABLIM1) axis on thrombus formation and human vascular endothelial cells (HUVECs) progression was evaluated aiming to identify a novel potential biomarker of DVT. DVT rat models were established by inferior vena cava stenosis. The expression of the miR-2467-3p/ABLIM1 axis was analyzed by PCR. HUVECs were induced with oxidative low-density lipoprotein (ox-LDL). Cell growth and motility were assessed by cell counting kit 8 (CCK8) and Transwell assay. The inflammation and oxidative stress were estimated by proinflammatory cytokines and generation of MDA and reactive oxygen species (ROS). ABLIM1 was downregulated in DVT rats. Overexpressing ABLIM1 could suppress the formation of thrombosis and alleviate inflammation and oxidative stress. In HUVECs, ox-LDL induced significantly increased miR-2467-3p and decreased ABLIM1, and miR-2467-3p could negatively regulate ABLIM1. The knockdown of miR-2467-3p could alleviate the inhibited cell growth and motility by ox-LDL, and the inflammation and oxidative stress were also attenuated. While silencing could reverse the effect of miR-2467-3p on ox-LDL-induced HUVECs. The miR-2467-3p/ABLIM1 axis regulates the occurrence and development of DVT through modulating HUVECs inflammation and oxidative stress.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39110328

RESUMEN

Long-term cell culture is an important biological approach but is also characterized by degeneration in cellular morphology, proliferation rate, and function. To explore this phenomenon in a systematic way, we conducted an integrative proteomics-metabolomics measurement of two cardiovascular cell lines of AC16 and HUVECs. The 18th culturing passages, i.e., G18, showed as the turning points by cell metabolism profiles, in which the metabolomic changes demonstrated the dysfunction of energy, amino acid, and ribonucleotide metabolism metabolic pathways. Although active protein networks showed mitochondria abundance AC16 and oxidative/nitrative sensitive HUVECs indicated the different degeneration patterns, the G18 and G30 proteomics evidenced the senescence by processes of signal transduction, signaling by interleukins, programmed cell death, cellular responses to stimuli, cell cycle, mRNA splicing, and translation. Some crucial proteins (RPS8, HNRNPR, SOD2, LMNB1, PSMA1, DECR1, GOT2, OGDH, PNP, CBS, ATIC, and IMPDH2) and metabolites (L-glutamic acid, guanine, citric acid, guanosine, guanosine diphosphate, glucose 6-phosphate, and adenosine) that contributed to the dysregulation of cellular homeostasis are identified by using the integrative proteomic-metabolomic analysis, which highlighted the increased cellular instability. These findings illuminate some vital molecular processes when culturing serial passages, which contribute holistic viewpoints of in vitro biology with emphasis on the replicative senescence of cardiovascular cells.

3.
J Med Food ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133117

RESUMEN

Twelve polyphenol derivatives were obtained in a protective activity-guided isolation from the Portulaca oleracea L. extract on a cell model of human umbilical vein endothelial cells (HUVECs) under diethylhexyl phthalate (DEHP) exposure. Among them, methyl (3,4,5-trimethoxybenzoyl) valylprolinate (PP-10) performed the most protective activity and inhibited DEHP exposure-induced HUVECs' apoptosis. PP-10 also inhibited the DEHP-induced inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-8) and adhesion molecule (ICAM-1 andVCAM-1) overexpression. Furthermore, DEHP-induced NLRP3 inflammasomes' and NF-κB signaling pathway activation was significantly inhibited after the PP-10 treatments. Of note, the current results suggest the potential application of Portulaca oleracea L. and PP-10 in the prevention of DEHP-induced inflammatory damages in HUVECs.

4.
Arch Physiol Biochem ; : 1-8, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066661

RESUMEN

Background: This study aimed to explore the molecular mechanism of homeodomain-interacting protein kinase 2 (HIPK2) in diabetic foot ulcers (DFU).Methods: High glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were used to construct DFU cell models. Cell functions were determined using CCK8 assay, EdU assay, flow cytometry, transwell assay, wound healing assay and tube formation assay. Quantitative real-time PCR and western blot were applied to measure the gene expression.Results: HG treatment suppressed HUVECs proliferation, invasion, migration, and angiogenesis, while enhanced apoptosis. HIPK2 was overexpressed in DFU patients, and its knockdown alleviated HG-induced HUVECs dysfunctions. USP7 stabilised HIPK2 protein by reducing its ubiquitination. USP7 overexpression promoted HG-induced HUVECs dysfunctions, and HIPK2 upregulation also reversed the regulation of USP7 knockdown on HG-induced HUVECs dysfunctions. USP7/HIPK2 axis inhibited the activity of PI3K/AKT pathway.Conclusion: Our study revealed that USP7-stabilised HIPK2 contributed to HG-induced HUVECs dysfunctions, thus accelerating DFU process.

5.
Cardiovasc Toxicol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976139

RESUMEN

Atherosclerosis (AS) is an inflammatory disease with multiple causes. Multiple circular RNAs (circRNAs) are known to be involved in the pathogenesis of AS. To explore the function and mechanism of circ_0005699 in oxidative low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) injury. Ox-LDL treatment restrained HUVECs viability, cell proliferation, and angiogenesis ability, and accelerated HUVECs apoptosis, inflammatory response, and oxidative stress. Circ_0005699 was up-regulated in the serum samples of AS patients and ox-LDL-induced HUVECs. Interference of circ_0005699 effectively rescued ox-LDL-induced injury in HUVECs. Additionally, miR-384 could bind to circ_0005699, and miR-384 depletion inverted the effects of circ_0005699 deficiency on ox-LDL-mediated HUVEC injury. Moreover, ASPH was a direct target of miR-384, and the enforced expression of ASPH overturned miR-384-induced effects on ox-LDL-induced HUVECs. Importantly, circ_0005699 regulated ASPH expression via sponging miR-384. Interference of circ_0005699 protected against ox-LDL-induced injury in HUVECs at least partly by regulating ASPH expression via acting as a miR-384 sponge.

6.
Biochem Biophys Res Commun ; 731: 150371, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39004065

RESUMEN

Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.

7.
Nat Prod Res ; : 1-7, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069726

RESUMEN

Rehmannia glutinosa Libosch, Achyranthes bidentata Bl. (A. bidentata), Dioscorea opposita Thunb, and Chrysanthemum morifolium Ramat (C. morifolium) are known as the 'Four Huaiqing Chinese Medicine' in China, which are used as materials for functional foods. In this paper, the constituents of Four Huaiqing Chinese Medicine were identified by UPLC-Q-TOF-MS/MS, and flavones and aromatic compounds are mainly responsible for these herbs. Moreover, C. morifolium exhibited the most significant effect in cobalt chloride-induced HUVECs injury, which could decrease cell apoptosis and the overproduction of ROS, lactic dehydrogenase (LD) and pyruvic acid, and increase the migration capacity of cells. Meanwhile, A. bidentata exhibited the most significant effect in isoproterenol-induced H9C2 cell injury, which could decrease the levels of ROS overproduction, BNP, NO, LD and pyruvic acid. Western blot revealed that C. morifolium and A. bidentata also could decrease the levels of bax/bcl-2 ratio, cleaved caspase-3, cytochrome c, HIF-1ɑ, GLUT1, HKII and PFKFB3, respectively.

8.
J Nanobiotechnology ; 22(1): 401, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982446

RESUMEN

Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.


Asunto(s)
Tendón Calcáneo , Exosomas , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Regeneración , Traumatismos de los Tendones , Cicatrización de Heridas , Animales , Exosomas/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Humanos , Tendón Calcáneo/lesiones , Traumatismos de los Tendones/terapia , Cicatrización de Heridas/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Inflamación
9.
Biochem Biophys Res Commun ; 723: 150188, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38824808

RESUMEN

Steroid (glucocorticoid)-induced necrosis of the femoral head (SONFH) represents a prevalent, progressive, and challenging bone and joint disease characterized by diminished osteogenesis and angiogenesis. Omaveloxolone (OMA), a semi-synthetic oleanocarpane triterpenoid with antioxidant, anti-inflammatory, and osteogenic properties, emerges as a potential therapeutic agent for SONFH. This study investigates the therapeutic impact of OMA on SONFH and elucidates its underlying mechanism. The in vitro environment of SONFH cells was simulated by inducing human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) using dexamethasone (DEX).Various assays, including CCK-8, alizarin red staining, Western blot, qPCR, immunofluorescence, flow cytometry, and TUNNEL, were employed to assess cell viability, STING/NF-κB signaling pathway-related proteins, hBMSCs osteogenesis, HUVECs migration, angiogenesis, and apoptosis. The results demonstrate that OMA promotes DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs by inhibiting the STING/NF-κB signaling pathway. This experimental evidence underscores the potential of OMA in regulating DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs through the STING/NF-κB pathway, thereby offering a promising avenue for improving the progression of SONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Glucocorticoides , Neovascularización Fisiológica , Osteogénesis , Humanos , Angiogénesis , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dexametasona/farmacología , Cabeza Femoral/patología , Cabeza Femoral/efectos de los fármacos , Cabeza Femoral/irrigación sanguínea , Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Necrosis de la Cabeza Femoral/metabolismo , Glucocorticoides/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/efectos de los fármacos , FN-kappa B/metabolismo , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38858305

RESUMEN

Accumulative evidences have indicated the interaction between cellular senescence and ferroptosis. This study intends to investigate the ferroptosis-related molecular markers in TNF-α-induced endothelial senescence. The microarray expression dataset (GSE195517) was used to identify the differently expressed ferroptosis-related genes (DEFRGs) through weighted gene co-expressed network analysis (WGCNA). GO and KEGG were performed to explore the biological function. Furthermore, hub genes were identified after protein-protein interaction (PPI) analysis and validated through real-time qPCR (RT-qPCR). Then, a drug-gene network was established to predict potential drugs for the hub genes. Seven DEFRGs were recognized in the TNF-α-induced HUVEC senescence. Moreover, four hub genes (PTGS2, TNFAIP3, CXCL2, and IL6 are upregulated) were identified by PPI analysis and validated by RT-qPCR. Further analysis exhibited that PTGS2 was subcellularly located in the plasma membrane. Furthermore, after aminosalicylic acid (ASA) was identified as ferroptosis inhibitor for targeting PTGS2 in senescent HUVECs, 5-ASA and 4-ASA were verified to alleviate TNF-α-induced HUVEC senescence through ferroptosis. PTGS2 might play a role in TNF-α-induced HUVEC senescence and ASA may be the potential drug for alleviating TNF-α-induced HUVEC senescence through ferroptosis.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38934275

RESUMEN

OBJECTIVE: Sageretia theezans is one of the classic medicines in ancient times, which is commonly used to treat scabies, lacquer sores, acute and chronic pharyngitis, Tonsillitis, Cholecystitis, secondary infection of hemorrhoids, and other symptoms. However, the potential molecular mechanism of Sageretia theezans is still unclear. In this study, we explored the active compounds of Sageretia theezans in the treatment of hemorrhoids (HD), predicted the potential targets of drugs, and verified their functions through network pharmacology and in vivo and in vitro experiments. METHODS: First, we identified the active compounds and key targets of Sageretia theezans in treating HD through network pharmacology. The key signaling pathways related to the role of Sageretia theezans were analyzed. HUVEC Human umbilical vein endothelial cells were used to study the function of Sageretia theezans and its target in vitro. In addition, we also used the SD rat hemorrhoid model to explore the efficacy of Sageretia theezans in HD in vivo. RESULT: A total of 159 drug targets were obtained from the TCMSP, ETCM, and PubChem databases. Constructing a drug component target network; differential analysis using sequencing data identified 1046 differentially expressed genes. Intersecting drug targets and differentially expressed genes obtained four intersection targets (GOT1, SLC25A10, SUCLG1, CLEC4E). Perform single gene GSEA functional enrichment analysis on intersection targets, select KEGG and GO of the top 10 for display, and merge the results. In order to investigate the interaction between intersecting genes and differentially expressed genes, we conducted a PPI protein interaction analysis on 1046 differentially expressed genes. Finally, a network of Chinese medicine active molecule intersection genes was proposed, and the genes and their corresponding active molecules (Successful acid, Taraxerone, Taraxerol) were Macromolecular docking, respectively. The results showed that these four genes could be successfully docked with the responsive active molecules and had high binding affinity. In vivo, the low-dose treatment group of Sageretia theezans, the medium-dose treatment group of Sageretia theezans, and the high-dose treatment group of Bromelia can inhibit the proliferation of HUVECs cells. In vitro, the middle dose of Sageretia theezans has the best therapeutic effect on hemorrhoids, and the treatment of Sageretia theezans on hemorrhoids is correlated with the expression of GOT1, SLC25A10, SUCLG1, and CLEC4E. CONCLUSION: To sum up, Sageretia theezans can alleviate the symptoms of hemorrhoids and is related to the expression of GOT1, SLC25A10, SUCLG1, and CLEC4E.

12.
Front Nutr ; 11: 1423098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933890

RESUMEN

Biopeptides from Sipunculus nudus were reported with good ACE inhibitory activity, and the tripeptide SRP was one with the highest ACE inhibition rate. However, the disadvantage of short half-life limited the development of peptide drugs. Moreover, the distinct mechanism of the peptide inhibiting ACE remained unknown. Thus, in this study, a sustained release formulation of SRP-PLGA-MS was designed and prepared. Its long-lasting antihypertensive effect as well as improvement of vascular pathomorphology was verified in spontaneously hypertensive rat (SHR). In addition, the anti-oxidant activity of SRP in human umbilical vein endothelial cells (HUVECs) was evaluated. The results showed that SRP inhibited the production of ROS and NO, which involve the NADPH oxidase, and Keap1/Nrf2 signaling pathway. This study demonstrated that SRP-PLGA-MS had the potential to develop sustained-release drugs for hypertension treatment.

13.
Bioimpacts ; 14(3): 28854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938755

RESUMEN

Introduction: The endothelial cells derived from the human vein cord (HUVECs) are used as in-vitro models for studying cellular and molecular pathophysiology, drug and hormones transport mechanisms, or pathways. In these studies, the proliferation and quantity of cells are important features that should be monitored and assessed regularly. So rapid, easy, noninvasive, and inexpensive methods are favorable for this purpose. Methods: In this work, a novel method based on fast Fourier transform square-wave voltammetry (FFTSWV) combined with a 3D printed electrochemical cell including two inserted platinum electrodes was developed for non-invasive and probeless rapid in-vitro monitoring and quantification of human umbilical vein endothelial cells (HUVECs). The electrochemical cell configuration, along with inverted microscope images, provided the capability of easy use, online in-vitro monitoring, and quantification of the cells during proliferation. Results: HUVECs were cultured and proliferated at defined experimental conditions, and standard cell counts in the initial range of 12 500 to 175 000 were prepared and calibrated by using a hemocytometer (Neubauer chamber) counting for electrochemical measurements. The optimum condition, for FFTSWV at a frequency of 100 Hz and 5 mV amplitude, were found to be a safe electrochemical measurement in the cell culture medium. In each run, the impedance or admittance measurement was measured in a 5 seconds time window. The total measurements were fulfilled at 5, 24, and 48 hours after the seeding of the cells, respectively. The recorded microscopic images before every electrochemical assay showed the conformity of morphology and objective counts of cells in every plate well. The proposed electrochemical method showed dynamic linearity in the range of 12 500-265 000 HUVECs 48 hours after the seeding of cells. Conclusion: The proposed electrochemical method can be used as a simple, fast, and noninvasive technique for tracing and monitoring of HUVECs population in in-vitro studies. This method is highly cheap in comparison with other traditional tools. The introduced configuration has the versatility to develop electrodes for the study of various cells and the application of other electrochemical designations.

14.
Cell Tissue Bank ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944663

RESUMEN

An injury that affects the integrity of the skin, either inside or externally, is called a wound. Damaged tissue is repaired by a set of cellular and molecular mechanisms known as wound healing. Quercetin, a naturally occurring flavonoid, may hasten the healing of wounds. The study's objective was to investigate any potential impacts of quercetin on the wound-healing process. Human umbilical vein endothelial cells (HUVECs) were treated to varying dose ranges of quercetin (5-320 nM) for 24 and 48 h. Cultured cells were evaluated by using the MTT analysis, wound scratch assay and vascular tube formation. Furthermore the gene expression of VEGF and FGF were evaluated by qRT-PCR to determine the effects of quercetin on angiogenezis and wound repair. Positive effects of quercetin on cellular viability were demonstrated by the MTT experiment. In HUVECs quercetin promoted tube formation, migration, and proliferation while also averting wound breakage. Moreover, quercetin increased the expression of the FGF and VEGF genes, which aid in the healing of wounds in HUVECs. Quercetin may be bioactive molecule that successfully speeds up wound healing by regulating the vasculogenezis and healing cells.

15.
Phytomedicine ; 130: 155715, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38788399

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is an end-stage change in many interstitial lung diseases, whereas no proven effective anti-pulmonary fibrotic treatments. Forsythoside A (FA) derived from Forsythia suspensa (Thunb.) Vahl, has been found to possess lung-protective effect. However, studies on its anti-pulmonary fibrosis effect are limited and its mechanism of action remains unknown. PURPOSE: This study aimed to explore the underlying mechanism of FA on PF. METHODS: Male C57BL/6 mice were randomized into normal (CON), model (BLM), pirfenidone (PFD), low- and high-dose FA (FA-L, FA-H, respectively). Except for the CON group, which was injected with the same dose of saline, the model of PF was established by intratracheal instillation of BLM, during which the survival rate and body weight changes of the mice were measured. The lung histopathology was evaluated by Hematoxylin-eosin, Sirius red, and Masson staining. Transcriptome analysis was performed to screen for the differential genes associated with the role of FA in PF. Differential genes in normal and pulmonary fibrosis patients with the GSE2052 dataset were analyzed in the GEO database. The levels of CTGF, α-SMA, MMP-8 in lung and TNF-α in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The levels of HYP in lungs were detected by digestion. The mRNA and protein levels of MMP-7, E-cadherin, CD31, α-SMA, TGF-ß1, IL-6, ß-catenin, ZO-1, PTPRB, E-cadherin, and vimentin in lungs were detected by RT-qPCR and Western blot. The expression of CD31, α-SMA, TGF-ß1 and ZO-1 were detected by immunofluorescence. TGF-ß1-stimulated HFL1 cells and human umbilical vein endothelial cells (HUVECs) were used in an attempt to explore the possible role of protein tyrosine phosphatase receptor type B (PTPRB) involved in FA-induced improvement of PF. RESULTS: The results showed that FA could improve the survival rate and body weight of PF mice. FA could alleviate the symptoms of alveolar wall thickening, inflammatory cell infiltration, blue collagen fiber deposition, collagen fiber type Ⅰ and type Ⅲ in mice with PF. In addition, FA could reduce the levels of HYP, CTGF, α-SMA, TGF-ß1, TNF-α, ß-catenin and MMP8, and regulate the expression levels of CD31, ZO-1, PTPRB and E-cadherin in lung of mice with PF, inhibiting endothelial-to-mesenchymal transition (EndMT) and fibroblasts proliferation. In the GSE2052 dataset, the expression level of PTPRB is reduced in lung tissue from PF patients, and results from transcriptome sequencing indicate that PTPRB expression is also reduced in PF mice. In addition, the effect of FA on TGF-ß1-induced HFL1 or HUVECs cells could be attenuated by the inhibitor of PTPRB, suggesting that the effect of FA on PF is related to PTPRB. CONCLUSION: This study demonstrated that FA could ameliorate PF by inhibiting lung fibroblast proliferation and EndMT, and that PTPRB might be a target of FA to ameliorate PF, which provided evidence to support FA as a candidate phytochemical for PF.


Asunto(s)
Forsythia , Glicósidos , Pulmón , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Transducción de Señal , Animales , Masculino , Fibrosis Pulmonar/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Glicósidos/farmacología , Forsythia/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Modelos Animales de Enfermedad , Actinas/metabolismo , Bleomicina
16.
Adv Healthc Mater ; 13(20): e2400040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739022

RESUMEN

3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.


Asunto(s)
Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Dispositivos Laboratorio en un Chip , Humanos , Movimiento Celular/fisiología , Hidrogeles/química , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Técnicas de Cocultivo/métodos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Modelos Biológicos
17.
Photodiagnosis Photodyn Ther ; 47: 104196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710260

RESUMEN

SIGNIFICANCE: Hemoporfin-mediated photodynamic therapy (HMME-PDT) has been recognized as a safe and effective treatment for port wine stain (PWS). However, some patients show limited improvement even after multiple treatments. Herein, we aim to explore the effect of autophagy on HMME-PDT in human umbilical vein endothelial cells (HUVECs), so as to provide theoretical basis and treatment strategies to enhance clinical effectiveness. METHODS: Establish the in vitro HMME-PDT system by HUVECs. Apoptosis and necrosis were identified by Annexin Ⅴ-FITC/PI flow cytometry, and autophagy flux was detected by monitoring RFP-GFP-LC3 under the fluorescence microscope. Hydroxychloroquine and rapamycin were employed in the mechanism study. Specifically, the certain genes and proteins were qualified by qPCR and Western Blot, respectively. The cytotoxicity was measured by CCK-8, VEGF-A secretion was determined by ELISA, and the tube formation of HUVECs was observed by angiogenesis assay. RESULTS: In vitro experiments revealed that autophagy and apoptosis coexisted in HUVECs treated by HMME-PDT. Apoptosis was dominant in early stage, while autophagy gradually increased in the middle and late stage. AMPK, AKT and mTOR participated in the regulation of autophagy induced by HMME-PDT, in which AMPK was positive regulation, while AKT and mTOR were negative regulation. Hydroxychloroquine could not inhibit HMME-PDT-induced autophagy, but capable of blocking the fusion of autophagosomes with lysosome. Rapamycin might cooperate with HMME-PDT to enhance autophagy in HUVECs, leading to increased cytotoxicity, reduced VEGF-A secretion, and weakened angiogenesis ability. CONCLUSIONS: Both autophagy and apoptosis contribute to HMME-PDT-induced HUVECs death. Pretreatment of HUVECs with rapamycin to induce autophagy might enhance the photodynamic killing effect of HMME-PDT on HUVECs. The combination of Rapamycin and HMME-PDT is expected to further improve the clinical efficacy.


Asunto(s)
Apoptosis , Autofagia , Células Endoteliales de la Vena Umbilical Humana , Fotoquimioterapia , Fármacos Fotosensibilizantes , Sirolimus , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Fotoquimioterapia/métodos , Autofagia/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Apoptosis/efectos de los fármacos , Sirolimus/farmacología , Hidroxicloroquina/farmacología , Porfirinas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Biochem Biophys Res Commun ; 719: 150100, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38763043

RESUMEN

One of the factors that predispose to fractures is liver damage. Interestingly, fractures are sometimes accompanied by abnormal liver function. Polyene phosphatidylcholine (PPC) is an important liver repair drug. We wondered if PPC had a role in promoting fracture healing. A rat model of tibial fracture was developed using the modified Einhorn model method. X-rays were used to detect the progression of fracture healing. Progress of ossification and angiogenesis at the fracture site were analyzed by Safranin O/fast green staining and CD31 immunohistochemistry. To investigate whether PPC has a direct angiogenesis effect, HUVECs were used. We performed MTT, wound healing, Transwell migration, and tube formation assays. Finally, RT-qPCR and Western blot analysis were used to study the underlying mechanism. The results showed that PPC significantly shortened the apparent recovery time of mobility in rats. PPC treatment significantly promoted the formation of cartilage callus, endochondral ossification, and angiogenesis at the fracture site. In vitro, PPC promoted the proliferative viability of HUVECs, their ability to heal wounds, and their ability to penetrate membranes in the Transwell apparatus and increased the tube formation of cells. The transcription of VEGFA, VEGFR2, PLCγ, RAS, ERK1/2 and MEK1/2 was significantly up regulated by PPC. Further, the protein level results demonstrated a significant increase in the expression of VEGFA, VEGFR2, MEK1/2, and ERK1/2 proteins. In conclusion, our findings suggest that PPC promotes angiogenesis by activating the VEGFA/VEGFR2 and downstream signaling pathway, thereby accelerating fracture healing.


Asunto(s)
Curación de Fractura , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Fosfatidilcolinas , Ratas Sprague-Dawley , Transducción de Señal , Fracturas de la Tibia , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Curación de Fractura/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/tratamiento farmacológico , Fracturas de la Tibia/patología , Transducción de Señal/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratas , Masculino , Fosfatidilcolinas/farmacología , Polienos/farmacología , Angiogénesis
19.
Mol Immunol ; 170: 119-130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657333

RESUMEN

BACKGROUND: Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS: UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS: UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION: UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.


Asunto(s)
Aterosclerosis , Proteína smad7 , Ubiquitina-Proteína Ligasas , Proteínas Señalizadoras YAP , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Aterosclerosis/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Lipoproteínas LDL/metabolismo , Ratones Endogámicos C57BL , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal , Proteína smad7/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Señalizadoras YAP/metabolismo
20.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634810

RESUMEN

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Asunto(s)
Técnicas de Cocultivo , Factor 2 de Crecimiento de Fibroblastos , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Ingeniería de Tejidos , Humanos , Tejido Adiposo/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Gelatina/química , Gelatina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metacrilatos/química , Metacrilatos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Ingeniería de Tejidos/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...