Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961693

RESUMEN

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.

2.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992595

RESUMEN

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Tylenchoidea , Animales , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/parasitología , Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal , Resistencia a la Enfermedad/genética , Luz , Regulación de la Expresión Génica de las Plantas , Fototransducción
3.
J Integr Plant Biol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874204

RESUMEN

Deep sowing is a traditional method for drought resistance in maize production, and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil. However, little is known about the functional genes and mechanisms regulating maize mesocotyl elongation. In the present study, we identified a plant-specific SIMILAR TO RCD-ONE (SRO) protein family member, ZmSRO1e, involved in maize mesocotyl elongation. The expression of ZmSRO1e is strongly inhibited upon transfer from dark to white light. The loss-of-function zmsro1e mutant exhibited a dramatically shorter mesocotyl than the wild-type in both constant light and darkness, while overexpression of ZmSRO1e significantly promoted mesocotyl elongation, indicating that ZmSRO1e positively regulates mesocotyl elongation. We showed that ZmSRO1e physically interacted with ZmbZIP61, an ortholog of Arabidopsis ELONGATED HYPOCOTYL 5 (HY5) and showed a function similar to that of HY5 in regulating photomorphogenesis. We found that ZmSRO1e repressed the transcriptional activity of ZmbZIP61 toward target genes involved in the regulation of cell expansion, such as ZmEXPB4 and ZmEXPB6, by interfering with the binding of ZmbZIP61 to the promoters of target genes. Our results provide a new understanding of the mechanism by which SRO regulates photomorphogenesis and highlight its potential application in deep sowing-resistant breeding.

4.
Plant Sci ; 346: 112168, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38914157

RESUMEN

Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Esteroles , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Esteroles/metabolismo , Esteroles/biosíntesis , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutación , Luz , Ácido Mevalónico/metabolismo
5.
Plant Physiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820143

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well-defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type (WT) and light signaling mutants in light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 (pin2) and PIN-FORMED 2 (pin3) mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding Reduced Residual Arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b- (RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signalling and other miRNA-mediated pathways.

6.
Plant Physiol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753298

RESUMEN

Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e., circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 (HDA9) and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.

7.
J Exp Bot ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660968

RESUMEN

The exogenous light cues and the phytohormone Abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of the crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes the regulation of germination and early seedling development, control of stomatal development and conductance, growth and development of roots, buds, branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors like HY5, COP1, PIFs and BBXs that integrate with ABA signaling components like the PYL receptors and ABI5. Especially, ABI5 and PIF4 promoters serve as key "hotspots" for the integration of these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss the recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.

8.
Biochem Biophys Res Commun ; 706: 149764, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484569

RESUMEN

Recent studies propose that primary transcripts of miRNAs (pri-miRNAs) contain small Open Reading Frames (ORFs) capable of encoding miRNA-encoded peptides (miPEPs). These miPEPs can function as transcriptional regulators for their corresponding pri-miRNAs, ultimately enhancing mature miRNA accumulation. Notably, pri-miR408 encodes the functional peptide miPEP408, regulating expression of miR408 and its target genes, providing plant tolerance to stresses. While miPEPs are crucial regulators, the factors governing them are have not been studied in detail. Here, we explored the light-dependent regulation of miPEP408 in Arabidopsis. Expression analysis during dark-light transitions revealed light-induced transcription and accumulation of the miPEP408. As the promoter of miR408 contains cis-acting elements responsible for binding to the bZIP-type transcription factor ELONGATED HYPOCOTYL5 (HY5), known for light-mediated regulation in plants, we studied its involvement in the regulation of miR408. Analysis of HY5 mutant (hy5-215), complemented line (HY5OX/hy5), and CONSTITUTIVE PHOTOMORPHOGENIC 1 mutant (cop1-4) plants supported HY5's positive regulation of miPEP408. Grafting and GUS assays further suggested the role of HY5 as a shoot-root mobile signal inducing light-dependent miPEP408 expression. This study underscores the regulatory impact of light on small peptides, exemplified by miPEP408, mediated by the key transcription factor HY5.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Péptidos/genética , Péptidos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
J Integr Plant Biol ; 66(5): 973-985, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391049

RESUMEN

Starch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far-red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Fitocromo B , Almidón , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Fototransducción , Fitocromo B/metabolismo , Fitocromo B/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Almidón/metabolismo , Almidón/biosíntesis
10.
Proc Natl Acad Sci U S A ; 121(6): e2313092121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300870

RESUMEN

Root development is tightly controlled by light, and the response is thought to depend on signal transmission from the shoot. Here, we show that the root apical meristem perceives light independently from aboveground organs to activate the light-regulated transcription factor ELONGATED HYPOCOTYL5 (HY5). The ROS balance between H2O2 and superoxide anion in the root is disturbed under darkness with increased H2O2. We demonstrate that root-derived HY5 directly activates PER6 expression to eliminate H2O2. Moreover, HY5 directly represses UPBEAT1, a known inhibitor of peroxidases, to release the expression of PERs, partially contributing to the light control of ROS balance in the root. Our results reveal an unexpected ability in roots with specific photoreception and provide a mechanistic framework for the HY5-mediated interaction between light and ROS signaling in early root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Peróxido de Hidrógeno/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas
11.
New Phytol ; 241(5): 1929-1935, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38178773

RESUMEN

ELONGATED HYPOCOTYL 5 (HY5), a bZIP-type transcription factor, is a master regulator of light-mediated responses. ELONGATED HYPOCOTYL 5 binds to the promoter of c. 3000 genes, thereby regulating various physiological and biological processes, including photomorphogenesis, flavonoid biosynthesis, root development, response to abiotic stress and nutrient homeostasis. In recent decades, it has become clear that light signaling plays a crucial role in promoting nutrient uptake and assimilation. Recent studies have revealed the molecular mechanisms underlying such encouraging effects and the crucial function of the transcription factor HY5, whose activity is regulated by many photoreceptors. The discovery that HY5 directly activates the expression of genes involved in nutrient uptake and utilization, including several nitrogen, iron, sulphur, phosphorus and copper uptake and assimilation-related genes, enhances our understanding of how light signaling regulates uptake and utilisation of multiple nutrients in plants. Here, we review recent advances in the role of HY5 in light-dependent nutrient uptake and utilization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plantas/metabolismo , Nutrientes , Regulación de la Expresión Génica de las Plantas
12.
Curr Opin Plant Biol ; 76: 102452, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709567

RESUMEN

Plant cells possess the ability to dedifferentiate and reprogram into stem cell-like populations, enabling the regeneration of new organs. However, the maintenance of stem cells relies on specialized microenvironments composed of distinct cell populations with specific functions. Consequently, the regeneration process necessitates the orchestrated regulation of multiple pathways across diverse cellular populations. One crucial pathway involves the transcription factor WUSCHEL HOMEOBOX 5 (WOX5), which plays a pivotal role in reprogramming cells into stem cells and promoting their conversion into shoot meristems through WUSCHEL (WUS). Additionally, cell and tissue mechanics, including cell wall modifications and mechanical stress, critically contribute to de novo shoot organogenesis by regulating polar auxin transport. Furthermore, light signaling emerges as a key regulator of plant regeneration, directly influencing expression of meristem genes and potentially influencing aforementioned pathways as well.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/genética , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brotes de la Planta/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685921

RESUMEN

Various stresses can affect the quality and yield of crops, including vegetables. In this study, CRISPR/Cas9 technology was employed to examine the role of the ELONGATED HYPOCOTYL 5 (HY5) gene in influencing the growth of Chinese cabbage (Brassica rapa). Single guide RNAs (sgRNAs) were designed to target the HY5 gene, and deep-sequencing analysis confirmed the induction of mutations in the bZIP domain of the gene. To investigate the response of Chinese cabbage to endoplasmic reticulum (ER) stress, plants were treated with tunicamycin (TM). Both wild-type and hy5 mutant plants showed increased growth inhibition with increasing TM concentration. However, the hy5 mutant plants displayed less severe growth inhibition compared to the wild type. Using nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining methods, we determined the amount of reactive oxygen species (ROS) produced under ER stress conditions, and found that the hy5 mutant plants generated lower levels of ROS compared to the wild type. Under ER stress conditions, the hy5 mutant plants exhibited lower expression levels of UPR- and cell death-related genes than the wild type. These results indicate that CRISPR/Cas9-mediated editing of the HY5 gene can mitigate growth inhibition in Chinese cabbage under stresses, improving the quality and yield of crops.


Asunto(s)
Brassica rapa , Brassica rapa/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Hipocótilo , ARN Guía de Sistemas CRISPR-Cas , Especies Reactivas de Oxígeno , Productos Agrícolas , Tunicamicina
14.
Plants (Basel) ; 12(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37631208

RESUMEN

Purple-grained wheat (Triticum aestivum L.) is an important germplasm source in crop breeding. Anthocyanin biosynthesis in the pericarps of purple-grained wheat is largely light-dependent; however, the regulatory mechanisms underlying light-induced anthocyanin accumulation in the wheat pericarp remain unknown. Here we determined that anthocyanins rapidly accumulate in the pericarps of the purple-grained wheat cultivar Heixiaomai 76 (H76) at 16 days after pollination under light treatment. Using transcriptome sequencing, differential gene expression analysis, and phylogenetic analysis, we identified two key genes involved in light signaling in wheat: ELONGATED HYPOCOTYL 5-7A (TaHY5-7A) and B-BOX-3B (TaBBX-3B). TaHY5-7A and TaBBX-3B were highly expressed in purple-grained wheat pericarps. The heterologous expression of TaHY5-7A partially restored the phenotype of the Arabidopsis (Arabidopsis thaliana) hy5 mutant, resulting in increased anthocyanin accumulation and a shortened hypocotyl. The heterologous expression of TaBBX-3B in wild-type Arabidopsis had similar effects. TaHY5-7A and TaBBX-3B were nucleus-localized, consistent with a function in transcription regulation. However, TaHY5-7A, which lacks a transactivation domain, was not sufficient to activate the expression of PURPLE PERICARP-MYB 1 (TaPpm1), the key anthocyanin biosynthesis regulator in purple pericarps of wheat. TaHY5-7A physically interacted with TaBBX-3B in yeast two-hybrid and bimolecular fluorescence complementation assays. Additionally, TaHY5-7A, together with TaBBX-3B, greatly enhanced the promoter activity of TaPpm1 in a dual luciferase assay. Overall, our results suggest that TaHY5-7A and TaBBX-3B collaboratively activate TaPpm1 expression to promote light-induced anthocyanin biosynthesis in purple-pericarp wheat.

15.
J Exp Bot ; 74(18): 5783-5804, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37392434

RESUMEN

Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.


Asunto(s)
Antocianinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas
16.
Plant Cell Environ ; 46(9): 2778-2793, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381151

RESUMEN

Oriented movement (phototaxis) is an efficient way to optimize light-driven processes and to avoid photodamage for motile algae. In Chlamydomonas the receptors for phototaxis are the channelrhodopsins ChR1 and ChR2. Both are directly light-gated, plasma membrane-localized cation channels. To optimally adjust its overall light-dependent responses, Chlamydomonas must tightly control the ChRs cellular abundance and integrate their activities into its general photoprotective network. How this is achieved is largely unknown. Here we show that the ChR1 protein level decreases upon illumination in a light-intensity and quality-dependent manner, whereas it is stable in prolonged darkness. Analysis of knockout strains of six major photoreceptors absorbing in the blue-violet range, which is most effective in evoking ChR1 degradation, revealed that only phototropin (PHOT) is involved. Notably, ChR2 degradation was normal in a ΔPHOT strain. Further, our results indicate that a COP1-SPA1 E3 ubiquitin ligase, the transcription factor Hy5 as well as changes in the cellular redox poise and cyclic nucleotide levels are additional components involved in this light acclimation response of Chlamydomonas. Our data highlight the presence of an adaptive framework connecting phototaxis with general photoprotective mechanisms via the use of overlapping signaling components already at the level of the primary photoreceptor.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Luz , Chlamydomonas/genética , Transducción de Señal/fisiología , Canales Iónicos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
New Phytol ; 239(5): 1887-1902, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322592

RESUMEN

B-box (BBX) proteins are an important class of zinc finger transcription factors that play a critical role in plant growth and stress response. However, the mechanisms of how BBX proteins participate in the cold response in tomato remain unclear. Here, using approaches of reverse genetics, biochemical and molecular biology we characterized a BBX transcription factor, SlBBX17, which positively regulates cold tolerance in tomato (Solanum lycopersicum). Overexpressing SlBBX17 enhanced C-repeat binding factor (CBF)-dependent cold tolerance in tomato plants, whereas silencing SlBBX17 increased plant susceptibility to cold stress. Crucially, the positive role of SlBBX17 in CBF-dependent cold tolerance was dependent on ELONGATED HYPOCOTYL5 (HY5). SlBBX17 physically interacted with SlHY5 to directly promote the protein stability of SlHY5 and subsequently increased the transcriptional activity of SlHY5 on SlCBF genes under cold stress. Further experiments showed that cold-activated mitogen-activated protein kinases, SlMPK1 and SlMPK2, also physically interact with and phosphorylate SlBBX17 to enhance the interaction between SlBBX17 and SlHY5, leading to enhanced CBF-dependent cold tolerance. Collectively, the study unveiled a mechanistic framework by which SlMPK1/2-SlBBX17-SlHY5 regulated transcription of SlCBFs to enhance cold tolerance, thereby shedding light on the molecular mechanisms of how plants respond to cold stress via multiple transcription factors.


Asunto(s)
Solanum lycopersicum , Fosforilación , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Frío , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Front Plant Sci ; 14: 1144273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360713

RESUMEN

Anthocyanins have important physiological functions and are beneficial to the improvement of fruit quality in strawberry. Light is important for anthocyanin biosynthesis, and specific light quality was identified to promote anthocyanin accumulation in many fruits. However, research on the molecular mechanisms of anthocyanin accumulation regulated by light quality in strawberry remains limited. Here we described the effects of red- and blue-light irradiation on anthocyanin accumulation in strawberry. The results showed that blue light, rather than red light, could lead to the rapid accumulation of anthocyanins after exposure to light for 48 hours. The transcriptional levels of anthocyanin structural and regulatory genes displayed similar trend to the anthocyanin content. To investigate the mechanism of blue light-induced anthocyanin accumulation, the homologs of Arabidopsis blue light signal transduction components, including the blue light photoreceptor FaCRY1, an E3 ubiquitin ligase FaCOP1 and light-responsive factor FaHY5, were cloned from the strawberry cultivar 'Benihoppe'. The protein-protein interaction of FaCRY1-FaCOP1-FaHY5 was revealed by yeast two-hybrid and fluorescence signal assays. Functional complementation analysis showed that overexpression of either FaCOP1 or FaHY5 restored the anthocyanin content and hypocotyl length in corresponding Arabidopsis mutants under blue light. Moreover, dual-luciferase assays showed that FaHY5 could increase the activity of FaRAP (anthocyanin transport gene) promoter and that this function relied on other, likely B-box protein FaBBX22, factors. The overexpression of FaHY5-VP16 (chimeric activator form of FaHY5) and FaBBX22 promoted the accumulation of anthocyanins in transgenic strawberry plants. Further, transcriptomic profiling indicated that the genes involved in the phenylpropanoid biosynthesis pathway were enriched in both FaHY5-VP16-OX and FaBBX22-OX strawberry plants. In summary, our findings provide insights into a mechanism involving the regulation of blue light-induced anthocyanin accumulation via a FaCRY1-FaCOP1-FaHY5 signal transduction module in strawberry.

19.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240046

RESUMEN

The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas/metabolismo , Plantones/genética , Plantones/metabolismo , Frutas/genética , Frutas/metabolismo , Carmin de Índigo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Plant J ; 115(5): 1394-1407, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243898

RESUMEN

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transducción de Señal/fisiología , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...