RESUMEN
Here, we report the results of a monitoring study of bat viruses in Austria to strengthen the knowledge of circulating viruses in Austrian bat populations. In this study, we analyzed 618 oropharyngeal and rectal swab samples from 309 bats and 155 pooled tissue samples from dead bats. Samples were collected from 18 different bat species from multiple locations in Austria, from November 2015 to April 2018, and examined for astroviruses, bornaviruses, coronaviruses, hantaviruses, morbilliviruses, orthomyxoviruses (influenza A/C/D viruses), pestiviruses and rhabdoviruses (lyssaviruses) using molecular techniques and sequencing. Using RT-qPCR, 36 samples revealed positive or suspicious results for astroviruses, Brno-hantaviruses, and coronaviruses in nine different bat species. Further sequencing revealed correspondent sequences in five samples. In contrast, none of the tested samples was positive for influenza viruses A/C/D, bornaviruses, morbilliviruses, lyssaviruses, or pestiviruses.
Asunto(s)
Quirópteros , Animales , Quirópteros/virología , Austria , Pestivirus/genética , Pestivirus/clasificación , Pestivirus/aislamiento & purificación , Filogenia , Astroviridae/genética , Astroviridae/aislamiento & purificación , Astroviridae/clasificación , Coronavirus/genética , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Lyssavirus/clasificación , Lyssavirus/genética , Lyssavirus/aislamiento & purificación , Morbillivirus/genética , Morbillivirus/clasificación , Morbillivirus/aislamiento & purificación , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Virosis/virología , Virosis/veterinariaRESUMEN
We investigated 2 acute cases and 1 previous case of Seoul hantavirus infection in workers in a feeder rodent breeding farm in Taiwan. Prevalence of hantavirus IgG among the tested feeder rats was 37.5%. Appropriate prevention measures, including using disinfection protocols and personal protective equipment, are crucial to lowering risk.
Asunto(s)
Infecciones por Hantavirus , Animales , Humanos , Taiwán/epidemiología , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Masculino , Adulto , Granjas , Anticuerpos Antivirales/sangre , Femenino , Exposición Profesional , Recurrencia , Ratas , Roedores/virología , Persona de Mediana Edad , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/virología , Historia del Siglo XXIRESUMEN
The objective is to determine the complete nucleotide sequence and conduct a phylogenetic analysis of genome variants of the Puumala virus isolated in the Saratov region. MATERIALS AND METHODS: The samples for the study were field material collected in the Gagarinsky (formerly Saratovsky), Engelssky, Novoburassky and Khvalynsky districts of the Saratov region in the period from 2019 to 2022. To specifically enrich the Puumala virus genome in the samples, were used PCR and developed a specific primer panel. Next, the resulting PCR products were sequenced and the fragments were assembled into one sequence for each segment of the virus genome. To construct phylogenetic trees, the maximum parsimony algorithm was used. RESULTS: Genetic variants of the Puumala virus isolated in the Saratov region have a high degree of genome similarity to each other, which indicates their unity of origin. According to phylogenetic analysis, they all form a separate branch in the cluster formed by hantaviruses from other subjects of the Volga Federal District. The virus variants from the Republics of Udmurtia and Tatarstan, as well as from the Samara and Ulyanovsk regions, are closest to the samples from the Saratov region. CONCLUSION: The data obtained show the presence of a pronounced territorial confinement of strains to certain regions or areas that are the natural biotopes of their carriers. This makes it possible to fairly accurately determine the territory of possible infection of patients and/or the circulation of carriers of these virus variants based on the sequence of individual segments of their genome.
Asunto(s)
Genoma Viral , Filogenia , Virus Puumala , Virus Puumala/genética , Virus Puumala/clasificación , Virus Puumala/aislamiento & purificación , Humanos , Federación de Rusia/epidemiología , Variación Genética , Fiebre Hemorrágica con Síndrome Renal/virología , AnimalesRESUMEN
BackgroundRodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA).AimWe wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses.MethodsWe conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries.ResultsThe accuracy of molecular detection of orthohantaviruses varied (50â67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones.ConclusionSerology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent-borne diseases.
Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Europa (Continente)/epidemiología , Infecciones por Hantavirus/diagnóstico , Anticuerpos AntiviralesRESUMEN
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-ß, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-ß and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific.
RESUMEN
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Asunto(s)
COVID-19 , Salud Única , Virosis , Animales , Humanos , Zoonosis/microbiología , Zoonosis Virales/epidemiología , Pandemias , Alemania , COVID-19/epidemiología , Virosis/epidemiologíaRESUMEN
"The Power of We" is a personal tribute to the individuals and organizations that collaborated in the discovery and advancement of knowledge of the hantaviruses following the original isolation of Hantaan virus by Ho Wang Lee. It focuses on the work done primarily at the United States Army Medical Research Institute of Infectious Diseases during the decade of the 1980s under the leadership of Joel Dalrymple, who worked in close partnership with Ho Wang Lee. These early studies helped define the global distribution of Seoul virus and provided seminal information on its maintenance and transmission among urban rats. Other collaborations involved partners in Europe, Asia, and Latin America and resulted in the isolation of novel hantaviruses, a better understanding of their global distribution, and validation of diagnostics and therapeutic interventions for treatment of human diseases. By working in partnership, scientists from around the world made critical discoveries that led to a better understanding of the hantaviruses. "The Power of We" demonstrates that we all benefit when we work together with a shared vision, a common commitment to excellence, and mutual respect.
Asunto(s)
Virus Hantaan , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Seoul , Animales , Humanos , Ratas , Asia , Europa (Continente) , Historia del Siglo XXRESUMEN
We investigated a prospective cohort of 23 patients who had Puumala virus infection in Austria to determine predictors of infection outcomes. We reviewed routinely available clinical and laboratory parameters collected when patients initially sought care. Low absolute lymphocyte count and dyspnea were parameters associated with a severe course of infection.
Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Linfopenia , Virus Puumala , Humanos , Disnea/etiología , Pronóstico , Estudios ProspectivosRESUMEN
With the immensely growing outbreaks of hantavirus with still no effective treatment available, there is an urgent need of exploring new computational approaches which will target potential virulent proteins that will eventually reduce its growth. In this study, an envelope glycoprotein, Gn, was targeted. The glycoproteins, which are the sole targets of neutralizing antibodies, drive virus entry via receptor-mediated endocytosis and endosomal membrane fusion. Inhibitors are herein proposed to negate its action mechanism. On the basis of the scaffolds of favipiravir, a FDA compound already used against hantavirus, a library was designed using a 2D fingerprinting approach. Upon molecular docking analysis, the top four docked compounds-(1) favipiravir (-4.5 kcal/mol), (2) N-hydroxy-3-oxo-3, 4-dihydropyrazine-2-carboxamide (-4.7 kcal/mol), (3) N, 5, 6-trimethyl-2-oxo-1H-pyrazine-3-carboxamide (-4.5 kcal/mol), and (4) 3-propyl-1H-pyrazin-2-one (-3.8)-were prioritized on the basis of the lowest binding energies score. Through molecular docking, the best-categorized compound was subjected to molecular dynamics simulation for a 100-ns time span. Molecular dynamics sheds light on each ligand behavior within the active site. Among the four complexes, only favipiravir and 6320122 compound were found to be stable inside the pocket. This is due to the presence of common rings, pyrazine and carboxamide ring, which make a significant interaction with active key residues Furthermore, the MMPB/GBSA binding free energy analysis calculated for all complexes supported the dynamics results by calculating the most stable values for favipiravir complex (-9.9933 and -8.6951 kcal/mol) and for 6320122 compound complex (-13.8675 and -9.3439 kcal/mol), which demonstrated that the selected compounds have a proper binding affinity with the targeted proteins. The hydrogen bond analysis similarly revealed a strong bonding interaction. The results yielded a strong interaction between the enzyme and the inhibitor throughout the simulation; thus, the inhibitor has the potential to become a lead compound and could be subjected to experimental evaluation to unveil their blockage ability.
Asunto(s)
Orthohantavirus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pirazinas/farmacologíaRESUMEN
The emergence of Sin Nombre orthohantavirus, an etiological agent of hantavirus cardiopulmonary syndrome, exacerbates the situation and imposes a heavy financial burden on healthcare organizations. Multidrug-resistant forms of the disease are prevalent, and there is currently no licensed commercial vaccine. Due to the numerous limitations of experimental vaccines, vaccines against various bacterial and viral diseases have developed via computational vaccine design. Several subtractive proteomics, immunoinformatics, docking, and simulation approaches were used in this study to develop a multi-epitope-based vaccine against Sin Nombre orthohantavirus. One possible antigenic protein-the glycoprotein precursor of surface glycoproteins (accession number >AAC42202.1)-was selected as a candidate for B cell-derived T cell epitopes mapping the detailed analysis of the core genome. Among the predicted epitopes, four epitopes (QVDWTKKSST, GLAASPPHL, SSYSYRRKLV, and MESGWSDTA), which were probably antigenic, nonallergenic, nontoxic, and water soluble, were used in the multi-epitope vaccine's construction. The shortlisted epitopes have the potency to cover 99.78% of the world's population, 97.93% of the Chinese population, and 97.36% of the Indian population. The epitopes were connected through AAY linkers and joined with >50S ribosomal adjuvant to enhance their efficacy. The vaccine comprises 182 amino acids with a molecular weight of 19.03770 kDa and an instability index of 26.52, indicating that the protein is stable. A molecular docking study revealed that the vaccine has a good binding affinity with TLR-4 and TLR-8, which is vital for inducing the immune system. Top-1 docked complexes of vaccine- TLR-4 and TLR-8 with the lowest binding energy of -12.52 kc/mol and -5.42 kc/mol, respectively, were considered for molecular dynamic simulation analysis. Furthermore, we predicted that the docked complexes are properly stable throughout simulation time in both normal mode and AMBER-based simulation analysis. The MMGBSA analysis calculated -122.17 and -125.4 net binding energies for the TLR-8- and TLR4-vaccine complexes, respectively, while the MMPBSA analysis estimated -115.63 and -118.19 for the TLR-8- and TLR4-vaccine complex, respectively, confirming that the binding stability with receptors is stable, which is important for inducing a strong response. However, the current work is computation-based, so experimental validation is highly recommended.
Asunto(s)
Epítopos de Linfocito T , Proteómica , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Receptor Toll-Like 4 , Receptor Toll-Like 8 , Simulación de Dinámica MolecularRESUMEN
Hemorrhagic fever with renal syndrome (HFRS), caused by hanta viruses (HTNV), can be complicated by severe complications. Seventeen percent of the HFRS patients with abdominal pain had acute pancreatitis (AP). The reported prevalence of AP among HFRS patients has a conspicuous high mortality rate. Of note, acute capillary cholangitis (ACC) among HFRS patients presenting with abdominal pain appears extremely rare, particularly independent of HFRS patients complicated with AP. The main pathophysiological mechanism of HFRS complicated with AP and ACC may be that it preferentially damages the microvascular and induces plasma leakage. To date, the management of severe HFRS cases is mainly based on supportive treatment, including extracorporeal blood purification and mechanical ventilation. Here, we describe an exceptionally rare case of a 34-year man who developed HFRS with AP and ACC while improving from HTNV infection via antiviral and supportive treatment.
RESUMEN
This study aimed to analyze the clinical significance of serum ferritin, procalcitonin (PCT), and C-reactive protein (CRP) in patients with hemorrhagic fever with renal syndrome (HFRS). The demographical, clinical, and laboratory data of 373 patients with HFRS in northeastern China were retrospectively analyzed. The levels of serum ferritin and PCT in severe patients (n = 108) were significantly higher than those in mild patients (n = 265, p < 0.001) and associated with HFRS severity. The area under the receiver operating characteristic curve (AUC) values of serum ferritin and PCT for predicting the severity of HFRS were 0.732 (95% CI 0.678-0.786, p < 0.001) and 0.824 (95% CI 0.773-0.875, p < 0.001), respectively, showing sensitivity and specificity of 0.75 and 0.88 for serum ferritin, and 0.76 and 0.60 for PCT. The CRP level in HFRS with bacterial co-infection (n = 115) was higher than that without bacterial co-infection (n = 258, p < 0.001). The AUC value of CRP for predicting bacterial co-infection was 0.588 (95% CI 0.525-0.652, p < 0.001), showing sensitivity and specificity of 0.43 and 0.76, respectively. The serum ferritin level in non-survivors (n = 14) was significantly higher than in survivors (n = 359, p < 0.001). The AUC value of serum ferritin for predicting mortality was 0.853 (95% CI 0.774-0.933, p < 0.001), showing sensitivity and specificity of 0.933 and 0.739. Serum ferritin and PCT have a robust association with HFRS severity and mortality, which may be promising predictors, and CRP is an effective biomarker to assess bacterial co-infection in HFRS.
RESUMEN
Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Autofagia , Genotipo , Orthohantavirus/genética , Humanos , Proteínas de la Nucleocápside/genética , Virus Puumala/genéticaRESUMEN
Haemorrhagic fever with renal syndrome (HFRS) is the most widespread natural-focal human disease in the Russian Federation. In this study, we report virological assessment of a fatal case of HFRS-PUUV (Puumala virus) in the Kursk Region. The infection caused severe multiorgan failure and the maximum viral load was detected in the tissue of the spleen. Viral sequences were obtained from the patient's autopsy material and lung tissues of bank voles captured in the region. These sequences formed a new clade in the PUUV phylogenetic tree, an outgroup to all known Russian (RUS) lineage sequences. On the other hand viruses collected in the Kursk Region grouped with the RUS lineage and are separated from all other PUUV linages. We propose to nominate this novel group as W-RUS as the identified viruses were collected near the western Russian boundary. The recombination signals between their ancestors and RUS lineage representatives from the Volga region were revealed. The strain Samara_94/CG/2005 suggestively emerged as the result of reassortment between the ancestors of W-RUS and DTK-Ufa-97.
Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Virus , Animales , Arvicolinae , Humanos , Filogenia , Virus Puumala/genética , Federación de RusiaRESUMEN
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants-TLR4-agonist adjuvant, ß-defensin, and 50S ribosomal protein L7/L12-using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is -29.63 kcal/mol (TLR4-agonist), -3.41 kcal/mol (ß-defensin), and -11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)-TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM-GBSA, -1628.47 kcal/mol and MM-PBSA, -37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM-GBSA, -194.62 kcal/mol and MM-PBSA, -150.67 kcal/mol); ß-defensin vaccine with TLR4 complex (MM-GBSA, -9.80 kcal/mol and MM-PBSA, -42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine.
RESUMEN
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
RESUMEN
Hantaviruses are globally emerging zoonotic viruses that can cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe, which is primarily caused by Hantaan virus (HTNV) infection, results in profound morbidity and mortality. However, no specific treatment is available for this disease. Coumarin derivatives have been reported as antiviral molecules, while studies about the bioactivity of coumarin derivatives against HTNV infection are limited. To study the potential antiviral activity of coumarin derivatives, 126 coumarin derivatives are synthesized, and their inhibitory activity against HTNV is analyzed in vitro. Among these compounds, N6 inhibits HTNV with relatively high selectivity index at 10.9, and the viral titer of HTNV is reduced significantly after 5, 10, and 20 µM N6 treatments. Furthermore, the administration of N6 at the early stage of HTNV infection can inhibit the replication and production of infectious HTNV in host cell, this therapeutic efficacy is confirmed in HTNV-infected newborn mice at the early stage of infection. The molecular docking results show that N6 forms interactions with the key amino acid residues at its active site, and reveals several molecular interactions responsible for the observed affinity, and the treatment of N6 can inhibit the expression of p (Ser473)Akt and HTNV nucleocapsid protein significantly. As such, these observations demonstrate that coumarin derivative N6 might be used as a potential agent against HTNV infection.
RESUMEN
BACKGROUND: Serologic cross-reactivity between hantaviruses often complicates the interpretation of the results. AIM: To analyze the diagnostic value of indirect immunofluorescence assay (IFA) and western blot (WB) in the diagnosis of hantavirus infections. METHODS: One hundred eighty-eight serum samples from Puumala (PUUV) and Dobrava (DOBV) orthohantavirus infected patients were analyzed. Serology was performed using commercial tests (Euroimmun, Lübeck, Germany). RESULTS: Using IFA, 49.5% of acute-phase samples showed a monotypic response to PUUV, while 50.5% cross-reacted with other hantaviruses. The overall cross-reactivity was higher for immunoglobulin G (IgG) (50.0%) than for immunoglobulin M (IgM) (25.5%). PUUV IgM/IgG antibodies showed low/moderate reactivity with orthohantaviruses Hantaan (12.3%/31.5%), Seoul (7.5%/17.8%), DOBV (5.4%/ 28.1%), and Saaremaa (4.8%/15.7%). Both DOBV IgM and IgG antibodies were broadly reactive with Hantaan (76.2%/95.2%), Saaremaa (80.9%/83.3%), and Seoul (78.6%/85.7%) and moderate with PUUV (28.5%/38.1%). Using a WB, serotyping was successful in most cross-reactive samples (89.5%). CONCLUSION: The presented results indicate that WB is more specific than IFA in the diagnosis of hantavirus infections, confirming serotype in most IFA cross-reactive samples.
RESUMEN
Hantaviruses are zoonotic pathogens that can cause serious human disorders, including hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. As the main risk factor for human infections is the interaction with rodents, occupational groups such as farmers and forestry workers are reportedly at high risk, but no summary evidence has been collected to date. Therefore, we searched two different databases (PubMed and EMBASE), focusing on studies reporting the prevalence of hantaviruses in farmers and forestry workers. Data were extracted using a standardized assessment form, and results of such analyses were systematically reported, summarized and compared. We identified a total of 42 articles, including a total of 28 estimates on farmers, and 22 on forestry workers, with a total workforce of 15,043 cases (821 positive cases, 5.5%). A pooled seroprevalence of 3.7% (95% confidence interval [95% CI] 2.2-6.2) was identified in farmers, compared to 3.8% (95% CI 2.6-5.7) in forestry workers. Compared to the reference population, an increased occurrence was reported for both occupational groups (odds ratio [OR] 1.875, 95% CI 1.438-2.445 and OR 2.892, 95% CI 2.079-4.023 for farmers and forestry workers, respectively). In summary, our analyses stress the actual occurrence of hantaviruses in selected occupational groups. Improved understanding of appropriate preventive measures, as well as further studies on hantavirus infection rates in reservoir host species (rodents, shrews, and bats) and virus transmission to humans, is needed to prevent future outbreaks.