Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1102344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949937

RESUMEN

Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.


Asunto(s)
Brugia Malayi , Filariasis , Humanos , Animales , Anticuerpos Antihelmínticos , Antígenos , Inmunoglobulina G
2.
Front Immunol ; 11: 592325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193437

RESUMEN

The balance of type 1 and type 2 immune responses plays a crucial role in anti-helminth immunity and can either support chronic infection or drive type 2 mediated expulsion of the parasite. Helminth antigens and secreted molecules directly influence this balance and induce a favorable immunological environment for the parasite's survival. However, less is known if the site of infection also influences the balance of type 1 and type 2 immunity. Here, we report that tissue-specific immune responses are mounted against helminth antigens, which elicited strong IL-4 responses when injected into the skin, while the same antigen, delivered into the intestinal subserosa, induced increased IFN-γ and reduced Th2 responses. Immune responses in individual mesenteric lymph nodes that drain defined regions of the intestine furthermore displayed a site-specific pattern of type 1 and type 2 immunity after Schistosoma mansoni or Heligmosomoides polygyrus infection. S. mansoni egg-specific Th2 responses were detectable in all mesenteric lymph nodes but Th1 responses were only present in those draining the colon, while H. polygyrus infection elicited mixed Th1 and Th2 responses in the lymph nodes associated with the site of infection. Similar site-specific type 1 and type 2 immune responses were observed in the draining lymph nodes after the controlled delivery of S. mansoni eggs into different segments of the small and large intestine using microsurgical techniques. Different subsets of intestinal dendritic cells were hereby responsible for the uptake and priming of Th1 and Th2 responses against helminth antigens. Migratory CD11b+CD103- and especially CD11b+CD103+ DC2s transported S. mansoni egg antigens to the draining lymph nodes to induce Th1 and Th2 responses, while CD103+ DC1s induced only IFN-γ responses. In contrast, H. polygyrus antigens were predominantly transported by CD11b+CD103- DC2s and CD103+ DC1s and all DC subsets induced similar Th1 but weaker Th2 responses, compared to S. mansoni egg antigens. The development of adaptive anti-helminth immune responses is therefore influenced by the antigen itself, the uptake and priming characteristics of antigen-positive dendritic cell subsets and the site of infection, which shape the level of Th1 and Th2 responses in order to create a favorable immunological environment for the parasite.


Asunto(s)
Antígenos Helmínticos/inmunología , Interacciones Huésped-Parásitos/inmunología , Ganglios Linfáticos/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Biomarcadores , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos/genética , Inmunización , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Recuento de Linfocitos , Mesenterio , Ratones , Ratones Noqueados , Esquistosomiasis mansoni/parasitología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/metabolismo , Células Th2/metabolismo
3.
Eur J Immunol ; 45(11): 3126-39, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26332354

RESUMEN

Infection with helminth parasites and treatment with worm extracts can suppress inflammatory disease, including colitis. Postulating that dendritic cells (DCs) participated in the suppression of inflammation and seeking to move beyond the use of helminths per se, we tested the ability of Hymenolepis diminuta antigen-pulsed DCs to suppress colitis as a novel cell-based immunotherapy. Bone marrow derived DCs pulsed with H. diminuta antigen (HD-DCs), or PBS-, BSA-, or LPS-DCs as controls, were transferred into wild-type (WT), interleukin-10 (IL-10) knock-out (KO), and RAG-1 KO mice, and the impact on dinitrobenzene sulphonic acid (DNBS)-induced colitis and splenic cytokine production assessed 72 h later. Mice receiving HD-DCs were significantly protected from DNBS-induced colitis and of the experimental groups only these mice displayed increased Th2 cytokines and IL-10 production. Adoptive transfer of HD-DCs protected neither RAG-1 nor IL-10 KO mice from DNBS-colitis. Furthermore, the transfer of CD4(+) splenocytes from recipients of HD-DCs protected naïve mice against DNBS-colitis, in an IL-10 dependent manner. Thus, HD-DCs are a novel anti-colitic immunotherapy that can educate anti-colitic CD4(+) T cells: mechanistically, the anti-colitic effect of HD-DCs requires that the host has an adaptive immune response and the ability to mobilize IL-10.


Asunto(s)
Antígenos Helmínticos/inmunología , Colitis/inmunología , Células Dendríticas/inmunología , Células Dendríticas/trasplante , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Hymenolepis diminuta/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...