Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Dev Genes Evol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977431

RESUMEN

Organisms display a remarkable diversity in their shapes. Although substantial progress has been made in unraveling the mechanisms that govern cell fate determination during development, the mechanisms by which fate-determined cells give rise to the final shapes of organisms remain largely unknown. This study describes in detail the process of the final shape formation of the tarsus, which is near the distal tip of the adult leg, during the pupal stage in Drosophila melanogaster. Days-long live imaging revealed unexpectedly complicated cellular dynamics. The epithelial cells transiently form the intriguing structure, which we named the Parthenon-like structure. The basal surface of the epithelial cells and localization of the basement membrane protein initially show a mesh-like structure and rapidly shrink into the membranous structure during the formation and disappearance of the Parthenon-like structure. Furthermore, macrophage-like cells are observed moving around actively in the Parthenon-like structure and engulfing epithelial cells. The findings in this research are expected to significantly contribute to our understanding of the mechanisms involved in shaping the final structure of the adult tarsus.

2.
Front Immunol ; 15: 1389674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994369

RESUMEN

Cell death is an important process in the body, as it occurs throughout every tissue during development, disease, and tissue regeneration. Phagocytes are responsible for clearing away dying cells and are typically characterized as either professional or nonprofessional phagocytes. Professional phagocytes, such as macrophages, are found in nearly every part of the body while nonprofessional phagocytes, such as epithelial cells, are found in every tissue type. However, there are organs that are considered "immune-privileged" as they have little to no immune surveillance and rely on nonprofessional phagocytes to engulf dying cells. These organs are surrounded by barriers to protect the tissue from viruses, bacteria, and perhaps even immune cells. The Drosophila ovary is considered immune-privileged, however the presence of hemocytes, the macrophages of Drosophila, around the ovary suggests they may have a potential function. Here we analyze hemocyte localization and potential functions in response to starvation-induced cell death in the ovary. Hemocytes were found to accumulate in the oviduct in the vicinity of mature eggs and follicle cell debris. Genetic ablation of hemocytes revealed that the presence of hemocytes affects oogenesis and that they phagocytose ovarian cell debris and in their absence fecundity decreases. Unpaired3, an IL-6 like cytokine, was found to be required for the recruitment of hemocytes to the oviduct to clear away obsolete follicle cells. These findings demonstrate a role for hemocytes in the ovary, providing a more thorough understanding of phagocyte communication and cell clearance in a previously thought immune-privileged organ.


Asunto(s)
Hemocitos , Ovario , Fagocitos , Fagocitosis , Animales , Femenino , Ovario/inmunología , Hemocitos/inmunología , Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/inmunología , Oogénesis , Drosophila/inmunología
3.
J Virol ; 98(8): e0053024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39051786

RESUMEN

Tiny controllers referred to as microRNAs (miRNAs) impede the expression of genes to modulate biological processes. In invertebrates, particularly in shrimp as a model organism, it has been demonstrated that miRNAs play a crucial role in modulating innate immune responses against viral infection. By analyzing small RNAs, we identified 60 differentially expressed miRNAs (DEMs) in Penaues vannamei hemocytes following infection with white spot syndrome virus (WSSV). We predicted the target genes of WSSV-responsive miRNAs, shedding light on their participation in diverse biological pathways. We are particularly intrigued by pva-miR-166, which is the most notably elevated miRNA among 60 DEMs. At 24 h post-infection (hpi), the negative correlation between the expression of pva-miR-166 and its target gene, PvProsaposin, was evident and their interaction was confirmed by a reduction in luciferase activity in vitro. Suppression of PvProsaposin in unchallenged shrimp led to decreased survival rates, reduced total hemocyte count (THC), and increased caspase 3/7 activity, suggesting its significant role in maintaining hemocyte homeostasis. In WSSV-infected shrimp, a lower number of hemocytes corresponded to a lower WSSV load, but higher shrimp mortality was observed when PvProsaposin was suppressed. Conformingly, the introduction of the pva-miR-166 mimic to WSSV-infected shrimp resulted in decreased levels of PvProsaposin transcripts, a significant loss of THC, and an increase in the hemocyte apoptosis. Taken together, we propose that pva-miR-166 modulates hemocyte homeostasis during WSSV infection by suppressing the PvProsaposin, an anti-apoptotic gene. PvProsaposin inhibition disrupts hemocyte homeostasis, rendering the shrimp's inability to withstand WSSV invasion.IMPORTANCEGene regulation by microRNAs (miRNAs) has been reported during viral infection. Furthermore, hemocytes serve a dual role, not only producing various immune-related molecules to combat viral infections but also acting as a viral replication site. Maintaining hemocyte homeostasis is pivotal for the shrimp's survival during infection. The upregulated miRNA pva-miR-166 could repress PvProsaposin expression in shrimp hemocytes infected with WSSV. The significance of PvProsaposin in maintaining hemocyte homeostasis via apoptosis led to reduced survival rate, decreased total hemocyte numbers, and elevated caspase 3/7 activity in PvProsaposin-silenced shrimp. Additionally, the inhibitory ability of pva-miR-166-mimic and dsRNA-PvProsaposin on the expression of PvProsaposin also lowered the THC, increases the hemocyte apoptosis, resulting in a lower WSSV copy number. Ultimately, the dysregulation of the anti-apoptotic gene PvProsaposin by pva-miR-166 during WSSV infection disrupts hemocyte homeostasis, leading to an immunocompromised state in shrimp, rendering them incapable of surviving WSSV invasion.


Asunto(s)
Apoptosis , Hemocitos , Homeostasis , MicroARNs , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Hemocitos/metabolismo , Hemocitos/virología , MicroARNs/genética , MicroARNs/metabolismo , Penaeidae/virología , Penaeidae/genética , Penaeidae/inmunología , Inmunidad Innata , Regulación de la Expresión Génica , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Interacciones Huésped-Patógeno
4.
Mar Pollut Bull ; 206: 116770, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053261

RESUMEN

This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 µM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 µM and LC50 = 5.8 µM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.


Asunto(s)
Compuestos de Bencidrilo , Gastrópodos , Hemocitos , Fenoles , Contaminantes Químicos del Agua , Animales , Fenoles/toxicidad , Hemocitos/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Gastrópodos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Fagocitosis/efectos de los fármacos , Células Cultivadas
5.
J Hazard Mater ; 476: 135003, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38917627

RESUMEN

Bivalve hemocytes are oyster immune cells composed of several cellular subtypes with different functions. Hemocytes accumulate high concentrations of copper (Cu) and exert critical roles in metal sequestration and detoxification in oysters, however the specific biochemical mechanisms that govern this have yet to be fully uncovered. Herein, we demonstrate that Cu(I) is predominately sequestered in lysosomes via the Cu transporter ATP7A in hemocytes to reduce the toxic effects of intracellular Cu(I). We also found that Cu(I) is translocated along tunneling nanotubes (TNTs) relocating from high Cu(I) cells to low Cu(I) cells, effectively reducing the burden caused by overloaded Cu(I), and that ATP7A facilitates the efflux of intracellular Cu(I) in both TNTs and hemocyte subtypes. We identify that elevated glutathione (GSH) contents and heat-shock protein (Hsp) levels, as well as the activation of the cell cycle were critical in maintaining the cellular homeostasis and function of hemocytes exposed to Cu. Cu exposure also increased the expression of membrane proteins (MYOF, RalA, RalBP1, and cadherins) and lipid transporter activity which can induce TNT formation, and activated the lysosomal signaling pathway, promoting intercellular lysosomal trafficking dependent on increased hydrolase activity and ATP-dependent activity. This study explores the intracellular and intercellular transport and detoxification of Cu in oyster hemocytes, which may help in understanding the potential toxicity and fate of metals in marine animals.


Asunto(s)
Cobre , Hemocitos , Animales , Hemocitos/metabolismo , Hemocitos/efectos de los fármacos , Cobre/toxicidad , Cobre/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Glutatión/metabolismo , Inactivación Metabólica , Ostreidae/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética
6.
Dev Comp Immunol ; 159: 105219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38925431

RESUMEN

An infection induces the migration of immune cells called hemocytes to the insect heart, where they aggregate around heart valves called ostia and phagocytose pathogens in areas of high hemolymph flow. Here, we investigated whether the cardiac extracellular matrix proteins, Pericardin (Prc) and Lonely heart (Loh), regulate the infection-induced aggregation of periostial hemocytes in the mosquito, An. gambiae. We discovered that RNAi-based post-transcriptional silencing of Prc or Loh did not affect the resident population of periostial hemocytes in uninfected mosquitoes, but that knocking down these genes decreases the infection-induced migration of hemocytes to the heart. Knocking down Prc or Loh did not affect the proportional distribution of periostial hemocytes along the periostial regions. Moreover, knocking down Prc or Loh did not affect the number of sessile hemocytes outside the periostial regions, suggesting that the role of these proteins is cardiac-specific. Finally, knocking down Prc or Loh did not affect the amount of melanin at the periostial regions, or the intensity of an infection at 24 h after challenge. Overall, we demonstrate that Prc and Loh are positive regulators of the infection-induced migration of hemocytes to the heart of mosquitoes.


Asunto(s)
Anopheles , Hemocitos , Proteínas de Insectos , Animales , Hemocitos/metabolismo , Hemocitos/fisiología , Hemocitos/inmunología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Anopheles/inmunología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Movimiento Celular , Interferencia de ARN , Agregación Celular/inmunología , Fagocitosis , Melaninas/metabolismo
7.
Vet Pathol ; : 3009858241257898, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860284

RESUMEN

Although neoplasia has been documented in invertebrates, it has not been reported in scorpions. This report describes presumed hemocytic neoplasia in 2 scorpions: a >3-year-old, female emperor scorpion (Pandinus imperator) and a >4-year-old, male, Asian forest scorpion (Heterometrus sp.). The emperor scorpion had a 1-month history of body wall swelling separating the exoskeleton of the caudal opisthosoma. At necropsy, this corresponded to a white mass in the caudal coelom. The forest scorpion was found dead and processed whole for histology, at which point multiple masses were identified in the coelom and invading skeletal muscle. Histologically, both masses were composed of sheets of hemocytes with round to oval nuclei; eosinophilic, periodic acid Schiff-positive, cytoplasmic granules; mild cellular atypia; and low mitotic rates. Features of inflammation (e.g., melanization and nodulation) were not observed. These masses were diagnosed as a hemocytoma (emperor scorpion) and a hemocytic sarcoma (forest scorpion), possibly of plasmatocyte origin.

8.
Neural Dev ; 19(1): 7, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902780

RESUMEN

Adult neurogenesis, which takes place in both vertebrate and invertebrate species, is the process by which new neurons are born and integrated into existing functional neural circuits, long after embryonic development. Most studies in mammals suggest that self-renewing stem cells are the source of the new neurons, although the extent of self-renewal is a matter of debate. In contrast, research in the crayfish Procambarus clarkii has demonstrated that the neural progenitors producing adult-born neurons are capable of both self-renewing and consuming (non-self-renewing) divisions. However, self-renewing divisions are relatively rare, and therefore the production of adult-born neurons depends heavily on progenitors that are not replenishing themselves. Because the small pool of neural progenitors in the neurogenic niche is never exhausted throughout the long lives of these animals, we hypothesized that there must also be an extrinsic source of these cells. It was subsequently demonstrated that the neural progenitors originate in hemocytes (blood cells) produced by the immune system that travel in the circulation before ultimately integrating into niches where the neural lineage begins. The current study examines the developmental lineage of the three hemocyte types - hyaline (HC), semigranular (SGC) and granular (GC) cells - with the goal of understanding the origins of the progenitor cells that produce adult-born neurons. Longstanding qualitative metrics for hemocyte classification were validated quantitatively. Then, in a longitudinal study, proliferation markers were used to label the hemocytes in vivo, followed by sampling the circulating hemocyte population over the course of two months. Hemolymph samples were taken at intervals to track the frequencies of the different hemocyte types. These data reveal sequential peaks in the relative frequencies of HCs, SGCs and GCs, which were identified using qualitative and quantitative measures. These findings suggest that the three hemocyte types comprise a single cellular lineage that occurs in the circulation, with each type as a sequential progressive stage in hemocyte maturation beginning with HCs and ending with GCs. When combined with previously published data, this timeline provides additional evidence that HCs serve as the primary neural progenitor during adult neurogenesis in P. clarkii.


Asunto(s)
Linaje de la Célula , Hemocitos , Células-Madre Neurales , Neurogénesis , Animales , Neurogénesis/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Hemocitos/citología , Hemocitos/fisiología , Linaje de la Célula/fisiología , Astacoidea/citología , Astacoidea/fisiología , Neuronas/fisiología , Neuronas/citología
9.
J Insect Physiol ; 155: 104646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705455

RESUMEN

Cotesia typhae is an eastern African endoparasitoid braconid wasp that targets the larval stage of the lepidopteran stem borer, Sesamia nonagrioides, a maize crop pest in Europe. The French host population is partially resistant to the Makindu strain of the wasp, allowing its development in only 40% of the cases. Resistant larvae can encapsulate the parasitoid and survive the infection. This interaction provides a very interesting frame for investigating the impact of parasitism on host cellular resistance. We characterized the parasitoid ovolarval development in a permissive host and studied the encapsulation process in a resistant host by dissection and histological sectioning compared to that of inert chromatography beads. We measured the total hemocyte count in parasitized and bead-injected larvae over time to monitor the magnitude of the immune reaction. Our results show that parasitism of resistant hosts delayed encapsulation but did not affect immune abilities towards inert beads. Moreover, while bead injection increased total hemocyte count, it remained constant in resistant and permissive larvae. We conclude that while Cotesia spp virulence factors are known to impair the host immune system, our results suggest that passive evasion could also occur.


Asunto(s)
Hemocitos , Interacciones Huésped-Parásitos , Larva , Mariposas Nocturnas , Avispas , Animales , Avispas/fisiología , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/inmunología , Larva/fisiología , Mariposas Nocturnas/parasitología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/crecimiento & desarrollo
10.
Sci Total Environ ; 935: 173483, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38796022

RESUMEN

The innate immunity of bivalves serves as the initial defense mechanism against environmental pollutants, ultimately impacting genetic regulatory networks through synergistic interactions. Previous research has demonstrated variations in the accumulation and tolerance capacities of bivalves; however, the specific mechanism underlying the low accumulation of PSTs in M. unguiculatus remains unclear. This study examined the alterations in feeding behavior and transcriptional regulation of M. unguiculatus following exposure to two Alexandrium strains with distinct toxin profiles, specifically gonyautoxin (AM) and N-sulfocarbamoyl toxin (AC). The total accumulation rate of PSTs in M. unguiculatus was 43.64 % (AC) and 27.80 % (AM), with highest PSTs content in the AM group (455.39 µg STXeq/kg). There were significant variations (P < 0.05) in physiological parameters, such as total hemocyte count, antioxidant superoxide activity and tissue damage in both groups. The absorption rate was identified as the key factor influencing toxin accumulation. Transcriptomic analyses demonstrated that PSTs triggered upregulation of endocytosis, lysosome, and immune-related signaling pathways. Furthermore, PSTs induced a nucleotide imbalance in the AC group, with total PSTs content serving as the most toxic indicator. These results suggested that protein-like substances had a crucial role in the stress response of M. unguiculatus to PSTs. This study provided novel perspectives on the impacts of intricate regulatory mechanisms and varying immune responses to PSTs in bivalves.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Mytilus , Animales , Dinoflagelados/fisiología , Mytilus/fisiología , Inmunidad Innata
12.
Cells ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607032

RESUMEN

Coevolution of hosts and their parasites has shaped heterogeneity of effector hemocyte types, providing immune defense reactions with variable effectiveness. In this work, we characterize hemocytes of Drosophila willistoni, a species that has evolved a cellular immune system with extensive variation and a high degree of plasticity. Monoclonal antibodies were raised and used in indirect immunofluorescence experiments to characterize hemocyte subpopulations, follow their functional features and differentiation. Pagocytosis and parasitization assays were used to determine the functional characteristics of hemocyte types. Samples were visualized using confocal and epifluorescence microscopy. We identified a new multinucleated giant hemocyte (MGH) type, which differentiates in the course of the cellular immune response to parasitoids. These cells differentiate in the circulation through nuclear division and cell fusion, and can also be derived from the central hematopoietic organ, the lymph gland. They have a binary function as they take up bacteria by phagocytosis and are involved in the encapsulation and elimination of the parasitoid. Here, we show that, in response to large foreign particles, such as parasitoids, MGHs differentiate, have a binary function and contribute to a highly effective cellular immune response, similar to the foreign body giant cells of vertebrates.


Asunto(s)
Drosophila , Parásitos , Animales , Diferenciación Celular , Fagocitosis , Inmunidad Celular
13.
Dev Cell ; 59(8): 1075-1090.e6, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521056

RESUMEN

The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Endorribonucleasas , Células Madre Hematopoyéticas , Receptores de Péptidos de Invertebrados , Respuesta de Proteína Desplegada , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Drosophila melanogaster/metabolismo , Óxido Nítrico/metabolismo , Receptores ErbB/metabolismo , Diferenciación Celular , Retículo Endoplásmico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
14.
BMC Biol ; 22(1): 60, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475850

RESUMEN

BACKGROUND: Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS: While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS: Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.


Asunto(s)
Drosophila , Avispas , Animales , Humanos , Drosophila melanogaster/metabolismo , Avispas/genética , Mitocondrias , Inmunidad Innata , Hemocitos/metabolismo
15.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323810

RESUMEN

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Asunto(s)
Proteínas de Artrópodos , Hemocitos , Interacciones Microbiota-Huesped , Penaeidae , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Hemocitos/citología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Penaeidae/citología , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/inmunología
17.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396656

RESUMEN

A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.


Asunto(s)
Ciona intestinalis , Animales , Ciona intestinalis/genética , Hemocitos/metabolismo , Péptidos/metabolismo , Faringe , Inmunidad
18.
J Innate Immun ; 16(1): 173-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387449

RESUMEN

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Asunto(s)
Bombyx , Encéfalo , Hemocitos , Inmunidad Innata , Larva , Muramidasa , Animales , Bombyx/inmunología , Bombyx/virología , Encéfalo/inmunología , Encéfalo/virología , Larva/inmunología , Larva/virología , Hemocitos/inmunología , Muramidasa/metabolismo , Muramidasa/genética , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/inmunología , Análisis de la Célula Individual , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
19.
Dev Cell ; 59(5): 566-578.e3, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38309266

RESUMEN

Cellular senescence is a conserved biological process that plays a crucial and context-dependent role in cancer. The highly heterogeneous and dynamic nature of senescent cells and their small numbers in tissues make in vivo mechanistic studies of senescence challenging. As a result, how multiple senescence-inducing signals are integrated in vivo to drive senescence in only a small number of cells is unclear. Here, we identify cells that exhibit multiple features of senescence in a Drosophila model of intestinal transformation, which emerge in response to concurrent activation of AKT, JNK, and DNA damage signaling within transformed tissue. Eliminating senescent cells, genetically or by treatment with senolytic compounds, reduces overgrowth and improves survival. We find that senescent cells promote tumorigenesis by recruiting Drosophila macrophages to the transformed tissue, which results in non-autonomous activation of JNK signaling. These findings identify senescent cell-macrophage interactions as an important driver of epithelial transformation.


Asunto(s)
Drosophila , Neoplasias , Animales , Senescencia Celular , Sistema de Señalización de MAP Quinasas , Macrófagos
20.
Fish Shellfish Immunol ; 147: 109460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382690

RESUMEN

Polyethylene microplastics (PE-MPs) has become a global concern due to their widespread distribution and hazardous properties in aquatic habitats. In this study, the accumulation effect of PE-MPs in the intestine of large-scale loach (Paramisgurnus dabryanus) was explored by adding different concentrations of PE-MPs to the water, the destination of PE-MPs after breaking the intestinal barrier and the effects caused. The collected data showed that PE-MPs accumulation for 21d altered the histomorphology and antioxidant enzyme activity of the intestine, induced dysbiosis of the intestinal flora. 10 mg/L of PE-MPs induced a significant increase in the transcript levels of intestinal immunity factors in loach after 21d of exposure. Moreover, the levels of diamine oxidase (DAO) and d-lactic acid (D-Lac) in the gut and serum of loach were significantly increased after exposure to PE-MPs at all concentrations (1, 5, 10 mg/L). Subsequently, the presence of PE-MPs was detected in the blood, suggesting that the disruption of the intestinal multilayer barrier allowed PE-MPs to spill into the circulation. The accumulation of PE-MPs (1,5,10 mg/L) in the blood led to massive apoptosis and necrosis of blood cells and activated phagocytosis in response to PE-MPs invasion. To alleviate the damage, this study further exposure the effect of probiotics on PE-MPs treated loach by adding Leuconostoc mesenteroides DH (109 CFU/g) to the feed. The results showed that DH significantly increased the intestinal index and reduced the levels of DAO and D-Lac. To investigate the reason, we followed the PE-MPs in the intestine and blood of the loach and found that the number of PE-MPs particles was significantly reduced in the probiotic group, while the PE-MPs content in the feces was elevated. Thus, we concluded that DH reducing the accumulation of PE-MPs in the intestinal by increases fecal PE-MPs, which in turn mitigates the damage to the intestinal barrier caused by PE-MPs, and reduces the amount of PE-MPs in the blood. This work offers a robust analysis to understand the mechanisms of damage to the intestinal barrier by MPs and the fate of MPs after escaping the intestinal barrier and provide a new perspective on the application of probiotics in mitigating PE-MPs toxicity.


Asunto(s)
Cipriniformes , Leuconostoc mesenteroides , Animales , Polietileno , Microplásticos , Plásticos , Antioxidantes , Intestinos , Células Sanguíneas , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...