RESUMEN
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
RESUMEN
This case report delves into the case of a 56-year-old female patient presenting with progressive cephalalgia syndrome, nausea, vomiting, and gait disorders, diagnosed with a high-grade thalamic glioma. Glioma is the most common form of central nervous system (CNS) neoplasm that originates from glial cells. Gliomas are diffusely infiltrative tumors that affect the surrounding brain tissue. Glioblastoma is the most malignant type, while pilocytic astrocytomas are the least malignant brain tumors. In the past, these diffuse gliomas were classified into different subtypes and grades based on histopathologies such as a diffuse astrocytoma, oligodendrogliomas, or mixed gliomas/oligoastrocytomas. Currently, gliomas are classified based on molecular and genetic markers. After the gross total resection, a postoperative brain CT scan was conducted, which confirmed the quasi-complete resection of the tumor. The successful gross total resection of the tumor in this case, coupled with significant neurological improvement postoperatively, illustrates the potential benefits of aggressive surgical management for thalamic gliomas. This report advocates for further research to assess the efficacy of such interventions in malignant cases and to establish standardized treatment protocols, considering the heterogeneity in prognostic outcomes and the advancements in molecular diagnostics that offer deeper insights into glioma oncogenesis and progression.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Femenino , Persona de Mediana Edad , Glioma/diagnóstico , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Tálamo/patología , Tálamo/diagnóstico por imagenRESUMEN
OBJECTIVES: High-grade gliomas (HGGs) are highly malignant, aggressive, and have a high incidence and mortality rate. The aim of this study was to investigate survival outcomes and prognostic factors in patients with HGGs. METHODS: In this retrospective study, a total of 159 patients with histologically confirmed HGGs were included. The recruitment period was from January 2011 to December 2019. We evaluated patient demographic data, tumor characteristics, treatment methods, immunocytochemistry results, overall survival (OS) time, and progression-free survival (PFS) time using Kaplan-<>Meier survival analysis with log-rank testing. Additionally, we employed Cox regression analysis to identify independent factors associated with survival outcomes. RESULTS: Kaplan-Meier survival analysis revealed that the 1-, 2-, and 5-years OS rates were 81.8%, 50.3%, and 12.6%, respectively. Similarly, the 1-, 2-, and 5-years PFS rates were 50.9%, 22.4%, and 3.1%, respectively. The median OS duration was 35.0 months. The univariate analysis indicated that postoperative pathological classification, grade, and age were significantly associated with patient outcomes (p < 0.01). Among the patients, 147 received concurrent chemoradiotherapy, while 12 did not. The immunohistochemical markers of ki-67, MGMT, IDH1R132H, and p53 demonstrated statistically significant differences in their prognostic impact (p = 0.001, p = 0.020, p = 0.003, and p = 0.021, respectively). In conclusion, we found that grades, age, pathological classification, ki-67, MGMT, and IDH1R132H expression were statistically significantly associated with PFS (p < 0.01, p = 0.004, p = 0.003, p = 0.001, p = 0.036, and p = 0.028). Additionally, immunohistochemical expressions of TRIB3 and AURKA were significantly higher in patients with shorter survival (p = 0.015 and p = 0.023). CONCLUSIONS: Tumor grade and the use of concurrent chemoradiotherapy after surgery were independent prognostic factors that significantly influenced patient survival. Additionally, tumor grade and MGMT expression were found to be independent factors affecting progression-free survival (PFS). Notably, the expression of TRIB3 and AURKA was higher in patients with poor survival outcomes.
Asunto(s)
Neoplasias Encefálicas , Glioma , Clasificación del Tumor , Humanos , Femenino , Masculino , Glioma/mortalidad , Glioma/patología , Glioma/terapia , Glioma/metabolismo , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Pronóstico , Anciano , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Quimioradioterapia , Adulto Joven , Estimación de Kaplan-Meier , Biomarcadores de Tumor/metabolismo , Supervivencia sin Progresión , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Análisis Multivariante , Proteínas Supresoras de Tumor/metabolismo , Tasa de Supervivencia , Adolescente , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/análisisRESUMEN
OBJECTIVE: High-grade gliomas are aggressive brain tumors with poor prognoses. Understanding the factors that influence their progression is crucial for improving treatment outcomes. This study investigates the prognostic significance of panimmune inflammation in patients diagnosed with high-grade gliomas. MATERIALS-METHODS: Data from 89 high-grade glioma patients were analysed retrospectively. The Panimmune inflammation Value (PIV) of each patient meeting the eligibility criteria was calculated on the basis of platelet, monocyte, neutrophil, and lymphocyte counts obtained from peripheral blood samples taken on the first day of treatment. PIV is calculated using the following formula: PIV = T × M × N ÷ L. A receiver operating characteristic (ROC) analysis was employed to identify the optimal cut-off value for PIV about progression-free survival (PFS) and overall survival (OS) outcomes. The primary and secondary endpoints were the differences in OS and PFS between the PIV groups. The KaplanâMeier method was used for survival analyses. RESULTS: The ROC analysis indicated that the optimal PIV threshold was 545.5, which exhibited a significant interaction with PFS and OS outcomes. Patients were subsequently divided into two groups based on their PIV levels: a low PIV (L-PIV) group comprising 45 patients and a high PIV (H-PIV) group comprising 44 patients. A comparative analysis of survival rates indicated that patients with elevated PIV had a shorter median PFS of 4.0 months compared to 8.0 months in the low PIV group (P = 0.797), as well as a reduced median OS of 19.0 months versus not available (NA) in the low PIV group (P = 0.215). CONCLUSION: Our study results did not reveal a statistically significant association between H-PIV measurements and reduced PFS or OS. However, PIV effectively stratified newly diagnosed high-grade glioma patients into two distinct groups with significantly different PFS and OS outcomes.
RESUMEN
BACKGROUND: Tumor Treating Fields (TTFields) are alternating electric fields that disrupt cancer cell processes. TTFields therapy is approved for recurrent glioblastoma (rGBM), and newly-diagnosed (nd) GBM (with concomitant temozolomide for ndGBM; US), and for grade IV glioma (EU). We present an updated global, post-marketing surveillance safety analysis of patients with CNS malignancies treated with TTFields therapy. METHODS: Safety data were collected from routine post-marketing activities for patients in North America, Europe, Israel, and Japan (October 2011-October 2022). Adverse events (AEs) were stratified by age, sex, and diagnosis. RESULTS: Overall, 25,898 patients were included (diagnoses: ndGBM [68%], rGBM [26%], anaplastic astrocytoma/oligodendroglioma [4%], other CNS malignancies [2%]). Median (range) age was 59 (3-103) years; 66% patients were male. Most (69%) patients were 18-65 years; 0.4% were < 18 years; 30% were > 65 years. All-cause and TTFields-related AEs occurred in 18,798 (73%) and 14,599 (56%) patients, respectively. Most common treatment-related AEs were beneath-array skin reactions (43%), electric sensation (tingling; 14%), and heat sensation (warmth; 12%). Treatment-related skin reactions were comparable in pediatric (39%), adult (42%), and elderly (45%) groups, and in males (41%) and females (46%); and similar across diagnostic subgroups (ndGBM, 46%; rGBM, 34%; anaplastic astrocytoma/oligodendroglioma, 42%; other, 40%). No TTFields-related systemic AEs were reported. CONCLUSIONS: This long-term, real-world analysis of > 25,000 patients demonstrated good tolerability of TTFields in patients with CNS malignancies. Most therapy-related AEs were manageable localized, non-serious skin events. The TTFields therapy safety profile remained consistent across subgroups (age, sex, and diagnosis), indicative of its broad applicability.
Asunto(s)
Terapia por Estimulación Eléctrica , Vigilancia de Productos Comercializados , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Adolescente , Niño , Adulto Joven , Anciano de 80 o más Años , Preescolar , Terapia por Estimulación Eléctrica/efectos adversos , Terapia por Estimulación Eléctrica/métodos , Neoplasias del Sistema Nervioso Central/terapia , Japón/epidemiologíaRESUMEN
BACKGROUND: High-grade gliomas (HGGs) have a rapid relapse and short survival. Studies have identified many clinical characteristics and biomarkers associated with progression-free survival (PFS) and over-survival (OS). However, there has not yet a comprehensive study on survival after the first progression (SAP). METHODS: From CGGA and TCGA, 319 and 308 HGGs were confirmed as the first progression. The data on clinical characteristics and biomarkers were analyzed in accordance with OS, PFS, and SAP. RESULTS: Analysis of 319 patients from CGGA, significant predictors of improved OS/PFS/SAP were WHO grade, MGMT promoter methylation, and Ki-67 expression in univariate analysis. Further multivariate analysis showed MGMT promoter methylation and Ki-67 expression were independent predictors. However, an analysis of 308 patients from TCGA found MGMT promoter methylation is the only prognostic marker. A longer SAP was observed in patients with methylated MGMT promoter after standard chemoradiotherapy. In our data, HGGs could be divided into low, intermediate, and high-risk groups for SAP by MGMT methylation and Ki-67 expression. CONCLUSIONS: Patients with MGMT promoter methylation have a prolonger SAP after standard chemoradiotherapy. HGGs could be divided into low, intermediate, and high-risk groups for SAP according to MGMT status and Ki-67 expression.
RESUMEN
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
RESUMEN
BACKGROUND: Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS: Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS: This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.
Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Glioma , Lenguaje , Humanos , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/cirugía , Glioma/diagnóstico por imagen , Vigilia/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/cirugíaRESUMEN
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
RESUMEN
Infiltrating gliomas are challenging to treat, as the blood-brain barrier significantly impedes the success of therapeutic interventions. While some clinical trials for high-grade gliomas have shown promise, patient outcomes remain poor. Microbubble-enhanced focused ultrasound (MB-FUS) is a rapidly evolving technology with demonstrated safety and efficacy in opening the blood-brain barrier across various disease models, including infiltrating gliomas. Initially recognized for its role in augmenting drug delivery, the potential of MB-FUS to augment liquid biopsy and immunotherapy is gaining research momentum. In this review, we will highlight recent advancements in preclinical and clinical studies that utilize focused ultrasound to treat gliomas and discuss the potential future uses of image-guided precision therapy using focused ultrasound.
RESUMEN
Background: Based on preclinical studies showing that IDH-mutant (IDHm) gliomas could be vulnerable to PARP inhibition we launched a multicenter phase 2 study to test the efficacy of olaparib monotherapy in this population. Methods: Adults with recurrent IDHm high-grade gliomas (HGGs) after radiotherapy and at least one line of alkylating chemotherapy were enrolled. The primary endpoint was a 6-month progression-free survival rate (PFS-6) according to response assessment in neuro-oncology criteria. Pre-defined threshold for study success was a PFS-6 of at least 50%. Results: Thirty-five patients with recurrent IDHm HGGs were enrolled, 77% atâ ≥â 2nd recurrence. Median time since diagnosis and radiotherapy were 7.5 years and 33 months, respectively. PFS-6 was 31.4% (95% CI [16.9; 49.3%]). Two patients (6%) had an objective response and 14 patients (40%) had a stable disease as their best response. Median PFS and median overall survival were 2.05 and 15.9 months, respectively. Oligodendrogliomas (1p/19q codeleted) had a higher PFS-6 (53.4% vs. 15.7%, Pâ =â .05) than astrocytomas while an initial diagnosis of grade 4 astrocytoma tended to be associated with a lower PFS-6 compared to grade 2/3 gliomas (0% vs 31.4%, Pâ =â .16). A grade 2 or 3 treatment-related adverse event was observed in 15 patients (43%) and 5 patients (14%), respectively. No patient definitively discontinued treatment due to side effects. Conclusions: Although it did not meet its primary endpoint, the present study shows that in this heavily pretreated population, olaparib monotherapy was well tolerated and resulted in some activity, supporting further PARP inhibitors evaluation in IDHm HGGs, especially in oligodendrogliomas.
RESUMEN
Purpose: Maximum safe surgical resection followed by adjuvant chemoradiation and temozolomide chemotherapy is the current standard of care in the management of newly diagnosed high grade glioma. However, there are controversies about the optimal number of adjuvant temozolomide cycles. This study aimed to compare the survival benefits of 12 cycles against 6 cycles of adjuvant temozolomide adults with newly diagnosed high grade gliomas. Methods: Adult patients with newly diagnosed high grade gliomas, and a Karnofsky performance status>60%, were randomized to receive either 6 cycles or 12 cycles of adjuvant temozolomide. Patients were followed-up for assessment of overall survival (OS) and progression-free survival (PFS) by brain MRI every 3 months within the first year after treatment and then every six months. Results: A total of 100 patients (6 cycles, 50; 12 cycles, 50) were entered. The rate of treatment completion in 6 cycles and 12 cycles groups were 91.3% and 55.1%, respectively. With a median follow-up of 26 months, the 12-, 24-, 36-, and 48-month OS rates in 6 cycles and 12 cycles groups were 81.3% vs 78.8%, 58.3% vs 49.8%, 47.6% vs 34.1%, and 47.6% vs 31.5%, respectively (p-value=.19). Median OS of 6 cycles and 12 cycles groups were 35 months (95% confidence interval (CI), 11.0 to 58.9) and 23 months (95%CI, 16.9 to 29.0). The 12-, 24-, 36-, and 48- month PFS rates in 6 cycles and 12 cycles groups were 70.8% vs 56.9%, 39.5% and 32.7%, 27.1% vs 28.8%, and 21.1% vs 28.8%, respectively (p=.88). The Median PFS of 6 cycles and 12 cycles groups was 18 months (95% CI, 14.8 to 21.1) and 16 (95% CI, 11.0 to 20.9) months. Conclusion: Patients with newly diagnosed high grade gliomas treated with adjuvant temozolomide after maximum safe surgical resection and adjuvant chemoradiation do not benefit from extended adjuvant temozolomide beyond 6 cycles. Trial registration: Prospectively registered with the Iranian Registry of Clinical Trials: IRCT20160706028815N3. Date registered: 18/03/14.
RESUMEN
Background: Diffuse midline gliomas (DMGs) are malignant tumors predominantly affecting children, often leading to poor outcomes. The 2021 World Health Organization classification identifies 3 subtypes of DMGs, all characterized by the loss of H3K27 trimethylation. Here, we report 2 cases of DMG with Epidermal Growth Factor Receptor (EGFR) mutations within exon 20, contributing to the understanding of the molecular complexity of these pediatric brain tumors. Methods: An economical immunohistochemical panel was designed to aid in the diagnosis of most DMGs in resource-constrained regions. Sanger sequencing was employed to identify rare EGFR mutations in exon 20 of 2 cases. Results: Molecular analyses of 2 cases of DMG revealed novel EGFR mutations within exon 20. These mutations were identified using cost-effective diagnostic approaches. The presence of EGFR mutations expands the molecular landscape of DMGs and highlights the genetic heterogeneity within this tumor entity. Conclusions: These findings underscore the molecular heterogeneity of DMGs and the significance of identifying novel mutations, such as EGFR mutations in exon 20. Further research into the molecular mechanisms underlying DMGs is warranted to advance therapeutic strategies and improve outcomes for pediatric patients.
RESUMEN
PURPOSE: The limited efficacy of current treatments for malignant brain tumors necessitates novel therapeutic strategies. This study aimed to assess the potential of antisense oligonucleotides (ASOs) as adjuvant therapy for high-grade gliomas, focusing on their CNS penetration and clinical translation prospects. METHODS: A comprehensive review of the existing literature was conducted to evaluate the implications of ASOs in neuro-oncology. Studies that investigated ASO therapy's efficacy, CNS penetration, and safety profile were analyzed to assess its potential as a therapeutic intervention for high-grade gliomas. RESULTS: ASOs present a promising avenue for enhancing targeted gene therapies in malignant gliomas. Their potent CNS penetration, in vivo durability, and efficient transduction offer advantages over conventional treatments. Preliminary in vivo and in vitro studies suggest ASOs as a viable adjuvant therapy for high-grade gliomas, warranting further exploration in clinical trials. CONCLUSIONS: ASOs hold significant promise as adjuvant therapy for high-grade gliomas, offering improved CNS penetration and durability compared with existing treatments. While preliminary studies are encouraging, additional research is needed to establish the safety and efficacy of ASO therapy in clinical settings. Further investigation and clinical trials are warranted to validate ASOs as a transformative approach in neuro-oncology.
RESUMEN
OBJECTIVE: High-grade glioma (HGG) patients frequently encounter treatment resistance and relapse, despite numerous interventions seeking enhanced survival outcomes yielding limited success. Consequently, this study, rooted in our prior research, aimed to ascertain whether leveraging circadian rhythm phase attributes could optimize radiotherapy results. METHODS: In this retrospective analysis, we meticulously selected 121 HGG cases with synchronized rhythms through Cosinor analysis. Post-surgery, all subjects underwent standard radiotherapy alongside Temozolomide chemotherapy. Random allocation ensued, dividing patients into morning (N = 69) and afternoon (N = 52) radiotherapy cohorts, enabling a comparison of survival and toxicity disparities. RESULTS: The afternoon radiotherapy group exhibited improved overall survival (OS) and progression-free survival (PFS) relative to the morning cohort. Notably, median OS extended to 25.6 months versus 18.5 months, with P = 0.014, with median PFS at 20.6 months versus 13.3 months, with P = 0.022, post-standardized radiotherapy. Additionally, lymphocyte expression levels in the afternoon radiation group 32.90(26.10, 39.10) significantly exceeded those in the morning group 31.30(26.50, 39.20), with P = 0.032. CONCLUSIONS: This study underscores the markedly prolonged average survival within the afternoon radiotherapy group. Moreover, lymphocyte proportion demonstrated a notable elevation in the afternoon group. Timely and strategic adjustments of therapeutic interventions show the potential to improve therapeutic efficacy, while maintaining vigilant systemic immune surveillance. A comprehensive grasp of physiological rhythms governing both the human body and tumor microenvironment can refine treatment efficacy, concurrently curtailing immune-related damage-a crucial facet of precision medicine.
RESUMEN
Pediatric brain tumors are the primary cause of death in children with cancer. Diffuse midline glioma (DMG) and diffuse intrinsic pontine glioma (DIPG) are frequently unresectable due to their difficult access location, and 5-year survival remains less than 20%. Despite significant advances in tumor biology and genetics, treatment options remain limited and ineffective. Immunotherapy using T cells with a chimeric antigen receptor (CAR) that has been genetically engineered is quickly emerging as a new treatment option for these patients. High levels of expression were detected for both disialoganglioside (GD2) and B7-H3 in pediatric DMG/DIPG. Numerous studies have been conducted in recent years employing various generations of GD2-CAR T cells. The two most prevalent adverse effects found with this therapy are cytokine release syndrome, which varies in severity from mild constitutional symptoms to a high-grade disease associated with potentially fatal multi-organ failure, and neurotoxicity, known as CAR T-cell-related encephalopathy syndrome. During the acute phase of anticancer action, peri-tumoral neuro-inflammation might cause deadly hydrocephalus. The initial results of clinical trials show that the outcomes are not highly encouraging as B cell malignancies and myelomas. In vivo research on CAR T-cell therapy for DIPG has yielded encouraging results, but in human trials, the early results have shown potentially fatal side effects and very modest, but fleeting improvements. Solid tumors present a hindrance to CAR T-cell therapy because of the antigenic dilemma and the strong immune-suppressing tumor microenvironment.
Asunto(s)
Glioma , Inmunoterapia Adoptiva , Humanos , Glioma/terapia , Glioma/inmunología , Niño , Inmunoterapia Adoptiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/inmunologíaRESUMEN
OBJECTIVES: To evaluate if the tumour perfusion at the initial MRI scan is a marker of prognosis for survival in patients diagnosed with High Grade Gliomas (HGG). To analyse the risk factors which influence on the mortality from HGG to quantify the overall survival to be expected in patients. PATIENTS AND METHODS: The patients diagnosed with HGG through a MRI scan in a third-level hospital between 2017 and 2019 were selected. Clinical and tumour variables were collected. The survival analysis was used to determine the association between the tumour perfusion and the survival time. The relation between the collected variables and the survival period was assessed through Wald's statistical method, measuring the relationship via Cox's regression model. Finally, the type of relationship that exists between the tumour perfusion and the survival was analysed through the Lineal Regression method.Those statistical analysis were carried out using the software SPSS v.17. RESULTS: 38 patients were included (average age: 61.1 years old). The general average survival period was 20.6 months. A relationship between the tumour perfusion at the MRI scan and the overall survival has been identified, in detail, a group with intratumor values of relative cerebral blood volume (rCBV)>3.0 has shown a significant decline in the average survival period with regard to the average survival period of the group with values <3.0 (14.6 months vs. 22.8 months, p = 0.046). It has also been proved that variables like Karnofsky's scale and the response time since the intervention significantly influence on the survival period. CONCLUSIONS: It has become evident that the tumour perfusion via MRI scan has a prognostic value in the initial analysis of HGG. The average survival period of patients with rCBV less than or equal to 3.0 is significantly higher than those patients whose values are higher, which allows to be more precise with the prognosis of each patient.
Asunto(s)
Encéfalo , Glioma , Humanos , Persona de Mediana Edad , Pronóstico , Perfusión , Glioma/diagnóstico por imagen , Imagen por Resonancia MagnéticaRESUMEN
PURPOSE: The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately determining the microscopic extent of tumors. The purpose of this study was to assess the survival impact of multi-observer delineation variability of multiparametric MRI (mpMRI) and [18F]-FET PET/CT. MATERIALS AND METHODS: Thirty prospectively included patients with histologically confirmed HGGs underwent a PET/CT and mpMRI including diffusion-weighted imaging (DWI: b0, b1000, ADC), contrast-enhanced T1-weighted imaging (T1-Gado), T2-weighted fluid-attenuated inversion recovery (T2Flair), and perfusion-weighted imaging with computation of relative cerebral blood volume (rCBV) and K2 maps. Nine radiation oncologists delineated the PET/CT and MRI sequences. Spatial similarity (Dice similarity coefficient: DSC) was calculated between the readers for each sequence. Impact of the DSC on progression-free survival (PFS) and overall survival (OS) was assessed using Kaplan-Meier curves and the log-rank test. RESULTS: The highest DSC mean values were reached for morphological sequences, ranging from 0.71 +/- 0.18 to 0.84 +/- 0.09 for T2Flair and T1Gado, respectively, while metabolic volumes defined by PET/CT achieved a mean DSC of 0.75 +/- 0.11. rCBV variability (mean DSC0.32 +/- 0.20) significantly impacted PFS (p = 0.02) and OS (p = 0.002). CONCLUSIONS: Our data suggest that the T1-Gado and T2Flair sequences were the most reproducible sequences, followed by PET/CT. Reproducibility for functional sequences was low, but rCBV inter-reader similarity significantly impacted PFS and OS.
RESUMEN
High-grade gliomas (HGG) pose significant challenges in modern tumour therapy due to the distinct biological properties and limitations of the blood-brain barrier. This review discusses recent advancements in HGG treatment, particularly in the context of immunotherapy and cellular therapy. Initially, treatment strategies focus on targeting tumour cells guided by the molecular characteristics of various gliomas, encompassing chemotherapy, radiotherapy and targeted therapy for enhanced precision. Additionally, technological enhancements are augmenting traditional treatment modalities. Furthermore, immunotherapy, emphasising comprehensive tumour management, has gained widespread attention. Immune checkpoint inhibitors, vaccines and CAR-T cells exhibit promising efficacy against recurrent HGG. Moreover, emerging therapies such as tumour treating fields (TTFields) offer additional treatment avenues for patients with HGG. The combination of diverse treatments holds promise for improving the prognosis of HGG, particularly in cases of recurrence.
RESUMEN
BACKGROUND: High-grade gliomas (HGGs) present a challenge in neuro-oncology, often necessitating surgical resection for optimal management. Ultrasound holds promise in achieving better gross total resection (GTR) and improving outcomes. This meta-analysis systematically evaluates literature providing robust evidence on the use of intraoperative ultrasonography (iUSG) in HGG resection. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines a comprehensive search was made across PubMed, Embase, Cochrane, and Web of Science utilized terms related to iUSG for HGG resection. The meta-analysis examined randomized trials and observational cohort studies on iUSG-guided HGG resection. GTR, subtotal resection, and postresection complications were assessed. Statistical analysis, employing R software for a single proportion analysis with confidence intervals of 95%, I2 statistics for heterogeneity, and the instrumental variables method with restricted maximum likelihood for a random effects model. RESULTS: A total of 178 patients were included in our study. The GTR overall rate in patients with iUSG-guided resection was found to be 64% (95% confidence interval: 46%-81%). Two-dimensional ultrasound remains dominant at 80% against other options of ultrasound. Complications were reported at a 15% rate (95% confidence interval: 7%-23%). CONCLUSIONS: Our study provided robust data on the utilization of iUSG-guided resection regarding the attainment of GTR and the complications related to resection. However, challenges such as outcome heterogeneity and limited complication reporting highlight the need for further research to optimize iUSG in HGG treatment. Long-term follow-up studies on patient survival and postsurgery quality of life will complement existing literature, guiding clinical practices in managing HGG.