Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.120
Filtrar
1.
Clin Epigenetics ; 16(1): 96, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033117

RESUMEN

BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Epigénesis Genética , Sirtuinas , Sirtuinas/genética , Sirtuinas/metabolismo , Ratones , Adipocitos/metabolismo , Animales , Epigénesis Genética/genética , Adipogénesis/genética , Humanos , Mutación , Obesidad/genética , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional/genética , Histonas/metabolismo , Histonas/genética
3.
Genetics ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039029

RESUMEN

Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.

4.
Methods Mol Biol ; 2836: 57-65, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995535

RESUMEN

The advancement of sequencing technologies has expanded our understanding of biological complexity through mechanisms such as allelic variations, alternative splicing of RNA, degradation of RNA by microRNAs, and posttranslational modifications (PTMs). In this chapter, we describe a method, PTMViz, for analyzing proteoforms identified by mass spectrometry. This interactive platform provides differential abundance analysis and visualization of protein and posttranslational modifications. We describe the detailed steps to prepare mass spectrometry database search results into the necessary format for PTMViz, how to set up the experimental conditions for differential abundance analysis, and the visualization of the results. The application is freely available at https://github.com/ByrumLab/PTMViz .


Asunto(s)
Procesamiento Proteico-Postraduccional , Programas Informáticos , Proteómica/métodos , Humanos , Espectrometría de Masas/métodos , Bases de Datos de Proteínas , Biología Computacional/métodos
5.
Bio Protoc ; 14(13): e5026, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007161

RESUMEN

Diseases caused by trypanosomatid parasites remain a significant unmet medical need for millions of people globally. Trypanosomatid parasites such as Trypanosoma cruzi and subspecies of Trypanosoma brucei cause Chagas disease and human African trypanosomiasis (HAT), respectively. Although efforts to find novel treatments have been successful for HAT, Chagas disease is still treated with decades-old therapies that suffer from long treatment durations and severe safety concerns. We recently described the identification and characterization of the cyanotriazole compound class that kills trypanosomes, in vitro and in vivo, by selective inhibition of the trypanosome nuclear topoisomerase II enzyme. To evaluate whether inhibition of the topoisomerase II enzyme led to parasite death due to lethal double-strand DNA breaks, we developed assays for detecting DNA damage in both intracellular amastigotes of T. cruzi and bloodstream-form T. brucei by using the canonical DNA damage marker γH2A. Herein, this article describes the protocols for detecting DNA damage using an immunofluorescence assessment of γH2A by microscopy in trypanosome parasites. Key features • Immunofluorescence-based assay to detect the γH2A response in T. brucei and T. cruzi parasites. • Robust DNA damage pathway-based cellular assays to evaluate topoisomerase II poisons' ability to cause DNA damage. • A 384-well plate-based T. cruzi protocol allows high-resolution and high-throughput evaluation of compounds that cause DNA damage by measuring γH2A in intracellular parasites. • This assay could be modifiable for evaluation of DNA damage responses in various intracellular and extracellular eukaryotic pathogens.

6.
Asia Pac Allergy ; 14(2): 70-76, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38827263

RESUMEN

Background: Histones have been associated with human diseases. However, the implication of extranuclear histone proteins and their potential mechanism in the pathophysiology of chronic rhinosinusitis (CRS) have not been thoroughly investigated. This study was designed to evaluate the role of histones in patients with CRS by comparing histone expression between patients and controls. Methods: Nasal polyp (NP) tissues were obtained, and their comprehensive gene expression profiles were investigated by microarray analysis. Differences in expression were verified by reverse transcriptase polymerase chain reaction and immunohistochemical staining. Cell culture and flow cytometry were used to evaluate the role of histones in the pathogenesis of polyps. Results: Significant differences in the microarray analysis were observed between the patient and control groups (P < 0.01). It was found by flow cytometry that the histone (H2BK) can promote cell apoptosis in NPs. Conclusion: Our results indicate that reduced expression of H2BK may contribute to the imbalance process of cell proliferation and apoptosis in CRS with NP.

7.
Materials (Basel) ; 17(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894040

RESUMEN

Silicon-based quantum dots (SiQDs) represent a special class of nanoparticles due to their low toxicity and easily modifiable surface properties. For this reason, they are used in applications such as bioimaging, fluorescent labeling, drug delivery, protein detection techniques, and tissue engineering despite a serious lack of information on possible in vivo effects. The present study aimed to characterize and evaluate the in vivo toxicity of SiQDs obtained by laser ablation in the lung and spleen of mice. The particles were administered in three different doses (1, 10, and 100 mg QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanized, and the lung and spleen tissues were harvested for the evaluation of antioxidant enzyme activity, lipid peroxidation, protein expression, and epigenetic and morphological changes. The obtained results highlighted a low toxicity in pulmonary and splenic tissues for concentrations up to 10 mg SiQDs/kg body, demonstrated by biochemical and histopathological analysis. Therefore, our study brings new experimental evidence on the biocompatibility of this type of QD, suggesting the possibility of expanding research on the biomedical applications of SiQDs.

8.
Mol Biochem Parasitol ; 260: 111631, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844266

RESUMEN

Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.

9.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892133

RESUMEN

Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.


Asunto(s)
Histonas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos , Histonas/química , Histonas/metabolismo , Péptidos/química , Ligandos , Unión Proteica , Sitios de Unión , Conformación Proteica , Humanos
10.
Plant Physiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865442

RESUMEN

The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.

11.
Methods Mol Biol ; 2817: 145-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907153

RESUMEN

With the rapid expansion of capabilities in the analysis of proteins in single cells, we can now identify multiple classes of protein posttranslational modifications on some of these proteins. Each new technology that has increased the number of proteins measured per cell has likewise increased our ability to identify and quantify modified peptides. In this chapter, I will discuss our current capabilities, concerns, and challenges specific to this emerging field of study and the inevitable demand for services, providing a general review of concepts that should be considered.


Asunto(s)
Procesamiento Proteico-Postraduccional , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Proteómica/métodos , Animales , Proteínas/metabolismo , Espectrometría de Masas/métodos
12.
Trends Genet ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910033

RESUMEN

The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.

13.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928493

RESUMEN

The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Histonas/metabolismo , Histonas/genética , Femenino , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Cromatina/genética , Nucleosomas/metabolismo , Familia de Multigenes
14.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38860363

RESUMEN

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Asunto(s)
Insuficiencia Cardíaca , Histonas , Ratones Transgénicos , Miocitos Cardíacos , Proteína p53 Supresora de Tumor , Ubiquitinación , Animales , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Femenino , Histonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Células Cultivadas , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regiones Promotoras Genéticas , Ratones Endogámicos C57BL
15.
Eur J Pharmacol ; 978: 176757, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38897440

RESUMEN

Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.


Asunto(s)
Envejecimiento , Trastorno Depresivo Mayor , Epigénesis Genética , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Envejecimiento/genética , Animales , Antidepresivos/uso terapéutico , Antidepresivos/farmacología
16.
Inflammation ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941006

RESUMEN

Cancer detection is challenging, especially in patients with unspecific cancer symptoms. Biomarkers could identify patients at high risk of cancer. Prior studies indicate that neutrophil extracellular traps (NETs) are associated with cancer, but also with autoimmune and infectious diseases. The objective of this prospective study was to investigate markers associated with NET formation (nucleosomal citrullinated histone 3 [H3Cit-DNA], cell free DNA [cfDNA] and neutrophil elastase [NE]), and c-reactive protein (CRP) in patients with unspecific cancer symptoms, such as fatigue, weight loss or radiological sign of malignancy without an apparent primary tumor, referred to the Diagnostic Center at Danderyd Hospital in Sweden. Blood samples were drawn on admission, before cancer diagnosis. Out of 475 patients, 160 (34%) were diagnosed with cancer, 56 (12%) with autoimmune disease, 32 (7%) with infectious disease, 71 (15%) with other diseases and 156 (33%) received no diagnosis. H3Cit-DNA, cfDNA, NE and CRP were significantly higher in patients with cancer compared to patients without cancer (p < 0.0001, p < 0.0001, p = 0.004, and p = 0.0002 respectively). H3Cit-DNA, but not cfDNA, NE or CRP, was significantly elevated in patients with cancer compared to patients with autoimmune disease (p = 0.0001). H3Cit-DNA, cfDNA, NE or CRP did not differ between cancer and infectious disease. In conclusion, H3Cit-DNA is elevated in patients diagnosed with cancer compared to non-cancer patients with the same symptomatology. Further studies should evaluate if H3Cit-DNA could aid in selecting patients that would benefit the most from a rapid cancer diagnostic work-up.

17.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915586

RESUMEN

The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.

18.
Methods Mol Biol ; 2807: 163-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743228

RESUMEN

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Asunto(s)
Inmunoprecipitación de Cromatina , Genoma Viral , Histonas , Retroviridae , Histonas/metabolismo , Humanos , Inmunoprecipitación de Cromatina/métodos , Retroviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Animales , ADN Viral/genética , Anticuerpos/inmunología
19.
Channels (Austin) ; 18(1): 2355150, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38762911

RESUMEN

P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.


Asunto(s)
Agonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Animales , Humanos , Adenosina Trifosfato/metabolismo , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo
20.
Biochem Soc Trans ; 52(3): 1219-1232, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38778762

RESUMEN

Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.


Asunto(s)
Histonas , Nucleosomas , Procesamiento Proteico-Postraduccional , Nucleosomas/metabolismo , Histonas/metabolismo , Humanos , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...