Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Hum Evol ; 196: 103590, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357283

RESUMEN

The Schöningen 13II-4 site is a marvel of Paleolithic archaeology. With the extraordinary preservation of complete wooden spears and butchered large mammal bones dating from the Middle Pleistocene, Schöningen maintains a prominent position in the halls of human origins worldwide. Here, we present the first analysis of the complete large mammal faunal assemblage from Schöningen 13II-4, drawing on multiple lines of zooarchaeological and taphonomic evidence to expose the full spectrum of hominin activities at the site-before, during, and after the hunt. Horse (Equus mosbachensis) remains dominate the assemblage and suggest a recurrent ambush hunting strategy along the margins of the Schöningen paleo-lake. In this regard, Schöningen 13II-4 provides the first undisputed evidence for hunting of a single prey species that can be studied from an in situ, open-air context. The Schöningen hominins likely relied on cooperative hunting strategy to target horse family groups, to the near exclusion of bachelor herds. Horse kills occurred during all seasons, implying a year-round presence of hominins on the Schöningen landscape. All portions of prey skeletons are represented in the assemblage, many complete and in semiarticulation, with little transport of skeletal parts away from the site. Butchery marks are abundant, and adult carcasses were processed more thoroughly than were juveniles. Numerous complete, unmodified bones indicated that lean meat and marrow were not always so highly prized, especially in events involving multiple kills when fat and animal hides may have received greater attention. The behaviors displayed at Schöningen continue to challenge our perceptions and models of past hominin lifeways, further cementing Schöningen's standing as the archetype for understanding hunting adaptations during the European Middle Pleistocene.

2.
J Hum Evol ; 194: 103579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173445

RESUMEN

A hominin mandible, KNM-ER 63000, and associated vertebrate remains were recovered in 2011 from Area 40 in East Turkana, Kenya. Tephrostratigraphic and magnetostratigraphic analyses indicate that these fossils date to ∼4.3 Ma. KNM-ER 63000 consists of articulating but worn and weathered mandibular corpora, with a broken right M2 crown and alveoli preserved at other tooth positions. Despite extensive damage, KNM-ER 63000 preserves diagnostic anatomy permitting attribution to Australopithecus anamensis. It can be distinguished from Australopithecus afarensis by its strongly inclined symphyseal axis with a basally convex, 'cut-away' external surface, a lateral corpus that sweeps inferomedially beneath the canine-premolar row, and alignment of the canine alveolus with the postcanine axis. KNM-ER 63000 is distinguished from Ardipithecus ramidus by its thick mandibular corpus and large M2 crown. The functional trait structure and enamel's stable carbon isotopic composition of the Area 40 large-mammal community suggests an environment comparable to Kanapoi and other ∼4.5-4 Ma eastern African sites that would have offered Au. anamensis access to both C3 and C4 food resources. With an age of ∼4.3 Ma, KNM-ER 63000 is the oldest known specimen of Au. anamensis, predating the Kanapoi and Asa Issie samples by at least ∼100 kyr. This specimen extends the known temporal range of Au. anamensis and places it in temporal overlap with fossils of Ar. ramidus from Gona, Ethiopia. The morphology of KNM-ER 63000 indicates that the reconfigured masticatory system differentiating basal hominins from the earliest australopiths existed in the narrow temporal window, if any, separating the two. The very close temporal juxtaposition of these significant morphological and adaptive differences implies that Ar. ramidus was a relative rather than a direct phyletic ancestor of earliest Australopithecus.


Asunto(s)
Fósiles , Hominidae , Mandíbula , Animales , Fósiles/anatomía & histología , Kenia , Hominidae/anatomía & histología , Mandíbula/anatomía & histología , Ambiente
3.
J Hum Evol ; 195: 103582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213793

RESUMEN

The earliest evidence for complex tool use in the archaeological record dates to 3.3 Ma. While wooden tools may have been used by our earliest ancestors, the evidence is absent due to poor preservation. However, insights into possible early hominin wooden tool use can be gained from observing the tool-use practices of our closest living relatives, chimpanzees (Pan troglodytes). By using stone hammers used to crack various nuts, chimpanzees leave a durable material signature comprised of formal tools and associated diagnostic fragments. While the archaeological evidence of chimpanzee wooden tool use is temporary, the combination of stone hammers and wooden anvils can create a more enduring lithic record. This study explores the lithic assemblages associated with wooden and stone anvil use at nut-cracking sites in Taï National Park, Côte d'Ivoire, using technological and use-wear analyses. Our results indicate clear differences in density, fracture patterns, and use-wear in the lithic records between wooden anvil and stone anvil sites. New archaeological excavations at six chimpanzee nut-cracking sites reveal that the anvils' material directly influences the visibility of nut-cracking evidence in the archaeological record. By examining the nature of the lithic signatures associated with wooden anvil and stone anvil use by chimpanzees, we can formulate hypotheses about the probability of such behaviors being preserved and identifiable in the Plio-Pleistocene hominin archaeological record. The variability in material signatures from nut-cracking on different anvils suggests that stone anvils leave a clear archaeological record. Evidence for wooden anvil use is likely underrepresented due to the more ephemeral nature of the associated percussive damage and material signature. It may, however, still be possible, albeit challenging, to identify wooden anvil use in the archaeological record.


Asunto(s)
Arqueología , Nueces , Pan troglodytes , Comportamiento del Uso de la Herramienta , Animales , Côte d'Ivoire , Madera
4.
Am J Biol Anthropol ; : e25007, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056239

RESUMEN

OBJECTIVES: Many early fossil hominins are associated with savanna-mosaic paleohabitats, and high sexual dimorphism that may reflect differences in positional behavior between sexes. However, reconstructions of hominin behavior and the selective pressures they faced in an open habitat are limited by a lack of studies of extant apes living in contemporary, analogous habitats. Here, we describe adult chimpanzee positional behavior in the savanna-mosaic habitat of the Issa Valley, Tanzania, to test whether Issa chimpanzees show larger sex-differences in positional behavior than their forest-dwelling counterparts. MATERIALS AND METHODS: We quantified and compared adult locomotor and postural behavior across sexes (6 females, 7 males) in the riparian forest (closed) and miombo woodland (open) vegetation types at Issa Valley (13,743 focal observations). We then compared our results to published data of chimpanzee communities living in more forested habitats. RESULTS: Issa females and males both spent less time arboreally in open vegetation and showed similar locomotor and postural behavior on the same substrates, notably using a high level of suspensory locomotion when arboreal. Females were, however, more arboreal than males during locomotor behavior, as well as compared with females from other communities. Issa males behaved similarly to males from other communities. CONCLUSION: Results suggest that open habitats do not elicit less arboreal behaviors in either sex, and may even select for suspensory locomotion to effectively navigate an open canopy. An open habitat may, however, increase sex differences in positional behavior by driving female arboreality. We suggest this is because of higher energetic demands and predator pressures associated with open vegetation, which are likely exaggerated for reproducing females. These results have implications for the interpretation of how sexual dimorphism may influence reconstructions of hominin positional behavior.

5.
Sci Rep ; 14(1): 16894, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043764

RESUMEN

The site of LuneryRosieres la-Terre-des-Sablons (Lunery, Cher, France) comprises early evidence of human occupation in mid-latitudes in Western Europe. It demonstrates hominin presence in the Loire River Basin during the Early Pleistocene at the transition between an interglacial stage and the beginning of the following glacial stage. Three archaeological levels sandwiched and associated with two diamicton levels deposited on the downcutting river floor indicate repeated temporary occupations. Lithic material yields evidence of simple and more complex core technologies on local Jurassic siliceous rocks and Oligocene millstone. Hominins availed of natural stone morphologies to produce flakes with limited preparation. Some cores show centripetal management and a partially prepared striking platform. The mean ESR age of 1175 ka ± 98 ka obtained on fluvial sediments overlying the archaeological levels could correspond to the transition between marine isotopic stages (MIS) 37 and 36, during the normal Cobb Mountain subchron, and in particular at the beginning of MIS 36. The Lunery site shows that hominins were capable of adapting to early glacial environmental conditions and adopting appropriate strategies for settling in mid-latitude zones. These areas cannot be considered as inhospitable at that time as Lunery lies at some distance from the forming ice cap.


Asunto(s)
Arqueología , Sedimentos Geológicos , Humanos , Sedimentos Geológicos/análisis , Francia , Tecnología/historia , Animales , Fósiles , Hominidae , Ocupaciones/historia , Europa (Continente)
6.
Evol Anthropol ; 33(4): e22031, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38757853

RESUMEN

Various selection pressures have shaped human uniqueness, for instance, music. When and why did musical universality and diversity emerge? Our hypothesis is that "music" initially originated from manipulative calls with limited musical elements. Thereafter, vocalizations became more complex and flexible along with a greater degree of social learning. Finally, constructed musical instruments and the language faculty resulted in diverse and context-specific music. Music precursors correspond to vocal communication among nonhuman primates, songbirds, and cetaceans. To place this scenario in hominin history, a three-phase scheme for music evolution is presented herein. We emphasize (1) the evolution of sociality and life history in australopithecines, (2) the evolution of cognitive and learning abilities in early/middle Homo, and (3) cultural evolution, primarily in Homo sapiens. Human musical capacity and products should be due to the hominin-specific combination of several biosocial features, including bipedalism, stable pair bonding, alloparenting, expanded brain size, and sexual selection.


Asunto(s)
Cognición , Evolución Cultural , Hominidae , Música , Animales , Humanos , Hominidae/fisiología , Cognición/fisiología , Evolución Biológica , Conducta Social , Antropología Física
7.
J Hum Evol ; 190: 103498, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581918

RESUMEN

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Asunto(s)
Hominidae , Animales , Kenia , Ecosistema , Evolución Biológica , Carbonatos , Arqueología , Fósiles
8.
Proc Natl Acad Sci U S A ; 121(13): e2318903121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466876

RESUMEN

Two recently published analyses make cases for severe bottlenecking of human populations occurring in the late Early Pleistocene, one case at about 0.9 Mya based on a genomic analysis of modern human populations and the low number of hominin sites of this age in Africa and the other at about 1.1 Mya based on an age inventory of sites of hominin presence in Eurasia. Both models point to climate change as the bottleneck trigger, albeit manifested at very different times, and have implications for human migrations as a mechanism to elude extinction at bottlenecking. Here, we assess the climatic and chronologic components of these models and suggest that the several hundred-thousand-year difference is largely an artifact of biases in the chronostratigraphic record of Eurasian hominin sites. We suggest that the best available data are consistent with the Galerian hypothesis expanded from Europe to Eurasia as a major migration pulse of fauna including hominins in the late Early Pleistocene as a consequence of the opening of land routes from Africa facilitated by a large sea level drop associated with the first major ice age of the Pleistocene and concurrent with widespread aridity across Africa that occurred during marine isotope stage 22 at ~0.9 Mya. This timing agrees with the independently dated bottleneck from genomic analysis of modern human populations and allows speculations about the relative roles of climate forcing on the survival of hominins.


Asunto(s)
Hominidae , Animales , Humanos , Hominidae/genética , Fósiles , África , Europa (Continente) , Migración Humana
9.
Am J Biol Anthropol ; 184(1): e24902, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400773

RESUMEN

OBJECTIVES: Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS: Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS: Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION: Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.


Asunto(s)
Hominidae , Animales , Humanos , Hominidae/anatomía & histología , Gorilla gorilla/anatomía & histología , Locomoción , Pongo , Pongo pygmaeus/anatomía & histología , Hueso Cortical
10.
J Hum Evol ; 187: 103495, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309243

RESUMEN

Distinguishing agents of bone modification at paleoanthropological sites is an important means of understanding early hominin evolution. Fracture pattern analysis is used to help determine site formation processes, including whether hominins were hunting or scavenging for animal food resources. Determination of how these behaviors manifested in ancient human sites has major implications for our biological and behavioral evolution, including social and cognitive abilities, dietary impacts of having access to in-bone nutrients like marrow, and cultural variation in butchering and food processing practices. Nevertheless, previous analyses remain inconclusive, often suffering from lack of replicability, misuse of mathematical methods, and/or failure to overcome equifinality. In this paper, we present a new approach aimed at distinguishing bone fragments resulting from hominin and carnivore breakage. Our analysis is founded on a large collection of scanned three-dimensional models of fragmentary bone broken by known agents, to which we apply state of the art machine learning algorithms. Our classification of fragments achieves an average mean accuracy of 77% across tests, thus demonstrating notable, but not overwhelming, success for distinguishing the agent of breakage. We note that, while previous research applying such algorithms has claimed higher success rates, fundamental errors in the application of machine learning protocols suggest that the reported accuracies are unjustified and unreliable. The systematic, fully documented, and proper application of machine learning algorithms leads to an inherent reproducibility of our study, and therefore our methods hold great potential for deciphering when and where hominins first began exploiting marrow and meat, and clarifying their importance and influence on human evolution.


Asunto(s)
Carnívoros , Hominidae , Animales , Humanos , Reproducibilidad de los Resultados , Hominidae/psicología , Huesos , Aprendizaje Automático
11.
PeerJ ; 12: e16821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313026

RESUMEN

The force a muscle generates is dependent on muscle structure, in which fibre length, pennation angle and tendon slack length all influence force production. Muscles are not preserved in the fossil record and these parameters must be estimated when constructing a musculoskeletal model. Here, we test the capability of digitally reconstructed muscles of the Australopithecus afarensis model (specimen AL 288-1) to maintain an upright, single-support limb posture. Our aim was to ascertain the influence that different architectural estimation methods have on muscle specialisation and on the subsequent inferences that can be extrapolated about limb function. Parameters were estimated for 36 muscles in the pelvis and lower limb and seven different musculoskeletal models of AL 288-1 were produced. These parameters represented either a 'static' Hill-type muscle model (n = 4 variants) which only incorporated force, or instead a 'dynamic' Hill-type muscle model with an elastic tendon and fibres that could vary force-length-velocity properties (n = 3 variants). Each muscle's fibre length, pennation angle, tendon slack length and maximal isometric force were calculated based upon different input variables. Static (inverse) simulations were computed in which the vertical and mediolateral ground reaction forces (GRF) were incrementally increased until limb collapse (simulation failure). All AL 288-1 variants produced somewhat similar simulated muscle activation patterns, but the maximum vertical GRF that could be exerted on a single limb was not consistent between models. Three of the four static-muscle models were unable to support >1.8 times body weight and produced models that under-performed. The dynamic-muscle models were stronger. Comparative results with a human model imply that similar muscle group activations between species are needed to sustain single-limb support at maximally applied GRFs in terms of the simplified static simulations (e.g., same walking pose) used here. This approach demonstrated the range of outputs that can be generated for a model of an extinct individual. Despite mostly comparable outputs, the models diverged mostly in terms of strength.


Asunto(s)
Músculo Esquelético , Tendones , Humanos , Músculo Esquelético/fisiología , Tendones/fisiología , Extremidad Inferior , Caminata , Pelvis
12.
J Hum Evol ; 187: 103490, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266614

RESUMEN

A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.


Asunto(s)
Hominidae , Diente , Humanos , Animales , Fósiles , Flujo Genético , Diente Molar , Diente Primario
13.
Evol Anthropol ; 33(1): e22012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009942

RESUMEN

In 1938, the first distal femur of a fossil Australopithecus was discovered at Sterkfontein, South Africa. A decade later, another distal femur was discovered at the same locality. These two fossil femora were the subject of a foundational paper authored by Kingsbury Heiple and Owen Lovejoy in 1971. In this paper, the authors discussed functionally relevant anatomies of these two fossil femora and noted their strong affinity to the modern human condition. Here, we update this work by including eight more fossil Australopithecus distal femora, an expanded comparative dataset, as well as additional linear measurements. Just as Heiple and Lovejoy reported a half-century ago, we find strong overlap between modern humans and cercopithecoids, except for inferiorly flattened condyles and a high bicondylar angle, both of which characterize modern humans and Australopithecus and are directly related to striding bipedalism. All other measured aspects of the femora are by-products of these key morphological traits. Additional fossil material from the early Pliocene will help to inform the evolution of the hominin distal femur and its condition in the Pan-Homo common ancestor that preceded bipedal locomotion.


Asunto(s)
Hominidae , Humanos , Animales , Hominidae/anatomía & histología , Fémur/anatomía & histología , Locomoción , Extremidad Inferior , Sudáfrica , Fósiles , Evolución Biológica
14.
Primates ; 65(1): 41-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903999

RESUMEN

Like humans, chimpanzees (Pan troglodytes) are well known for their vertebrate and invertebrate hunting, but they rarely scavenge. In contrast, while hunting and meat consumption became increasingly important during the evolution of the genus Homo, scavenging meat and marrow from carcasses of large mammals was also likely to be an important component of their subsistence strategies. Here, we describe a confrontational scavenging interaction between an adult male chimpanzee from the Issa Valley and a crowned eagle (Stephanoaetus coronatus), which resulted in the chimpanzee capturing and consuming the carcass of a juvenile bushbuck (Tragelaphus scriptus). We describe the interaction and contextualize this with previous scavenging observations from chimpanzees.


Asunto(s)
Águilas , Hominidae , Humanos , Masculino , Animales , Pan troglodytes , Tanzanía , Vertebrados , Ambiente , Mamíferos
15.
Am J Biol Anthropol ; 183(3): e24759, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37218536

RESUMEN

OBJECTIVES: Current evidence suggests that flaked stone tool technologies did not emerge until ~3.3-2.6 million-years-ago (Ma). It is often hypothesized that early hominin (principally Ardipithecus and early Australopithecus) manual anatomy may have prevented an earlier emergence, as the forceful precision grips essential to flake tool-use may have been ineffectively performed by these species. Marzke, Marchant, McGrew, and Reece (2015) observed potentially forceful pad-to-side precision grips being recruited by wild chimpanzees (Pan troglodytes) during feeding behaviors, indicating that Pan-like manual anatomy, and therefore potentially early hominin anatomy, may be capable of effectively securing flake stone tools during their use. MATERIALS AND METHODS: Here, we report on the grips recruited by four captive, human-trained, bonobos (Pan paniscus) during the use of stone and organic tools, including flake stone tools during cutting behaviors. RESULTS: It is revealed that pad-to-side precision grips are frequently recruited by these bonobos when securing stone flakes during cutting actions. In some instances, high forces could have been resisted and applied by the thumb and fingers. DISCUSSION: While our analyzes are preliminary and limited to captive individuals, and Pan is not suggested to secure flakes with the same efficacy as Homo or Australopithecus, it points to early hominins potentially being able to perform the precision grips required to use flake stone tools. In turn, the ability to gain tangible benefits from the effective use of flake tools (i.e., gain energetic returns from processing food resources) may have been - at least anatomically - possible in early Australopithecus and other pre-Early Stone Age hominin species. In turn, hominin manual anatomy may not be a leading restriction on the emergence of the earliest stone tool technologies.


Asunto(s)
Hominidae , Pan paniscus , Humanos , Animales , Hominidae/anatomía & histología , Pan troglodytes , Pulgar/anatomía & histología , Fuerza de la Mano
17.
J Hum Evol ; 186: 103466, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134581

RESUMEN

Although the Turkana Basin is one of the driest regions of the East African Rift, its Plio-Pleistocene sediments are rich in freshwater vertebrates and invertebrates, providing evidence that freshwater resources were available to hominins in this region during the Plio-Pleistocene (4.2-0.7 Ma). Here we provide an overview of the hydroconnectivity of the Turkana Basin. We then review the period during which freshwater river and lake systems expanded into the western region of the Turkana Basin, where hominin and archeological sites have been discovered in sediments dating back to the Late Pliocene-Pleistocene. Freshwater conditions are reconstructed from river and lake sediments and the flora and micro- and macofauna they contain. Data synthesis suggests that drinking water and freshwater foods prevailed in the western region of the Turkana Basin at 4.20-3.98 Ma, 3.70-3.10 Ma, 2.53-2.22 Ma, then between 2.10 and 1.30 Ma and intermittently from 1.27 to 0.75 Ma. Milestones in hominin evolution occurred in this context, such as the first occurrence of Australopithecus anamensis (4.20-4.10 Ma) and Kenyanthropus platyops (3.50 Ma and 3.30-3.20 Ma), the presence of Paranthropus aethiopicus (2.53-2.45 Ma), early Homo (2.33 Ma), Paranthropus boisei (2.25 Ma and 1.77-1.72 Ma) and Homo ergaster/Homo erectus (1.75 Ma, 1.47-1.42 Ma and 1.10-0.90 Ma). Developments in hominin behavior also occurred during this timeframe, including the first known stone tools (3.30 Ma), the oldest Oldowan sites (2.34 Ma and 2.25 Ma) in the Turkana Basin, the earliest known evidence for the emergence of bifacial shaping in eastern Africa (1.80 Ma), and the first known Acheulean site (1.76 Ma). Our synthesis suggests that, diachronic variation in hydroconnectivity played a role on the amount of drinking water and freshwater foods available in the western region of the Turkana Basin, despite regional aridity.


Asunto(s)
Agua Potable , Hominidae , Animales , Kenia , Fósiles , Agua Dulce , Evolución Biológica
18.
Evol Anthropol ; 32(6): 373-385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37877200

RESUMEN

To understand the ecological dominance of Homo sapiens, we need to investigate the origins of the plasticity that has enabled our colonization of the planet. We can approach this by exploring the variability of habitats to which different hominin populations have adapted over time. In this article, we draw upon and synthesize the current research on habitats of genus Homo during the early Pleistocene. We examined 121 published environmental reconstructions from 74 early Pleistocene sites or site phases to assess the balance of arguments in the research community. We found that, while grasslands and savannahs were prominent features of Homo habitats in the early Pleistocene, current research does not place early Pleistocene Homo, in any single environmental type, but in a wide variety of environments, ranging from open grasslands to forests. Our analysis also suggests that the first known dispersal of Homo out of Africa was accompanied by niche expansion.


Asunto(s)
Fósiles , Hominidae , Humanos , Animales , Ecosistema , África , Bosques , Evolución Biológica
19.
J Hum Evol ; 184: 103435, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774470

RESUMEN

Patterns of so-called modern human behavior are increasingly well documented in an abundance of Middle Stone Age archaeological sites across southern Africa. Contextualized archives directly preceding the southern African Middle Stone Age, however, remain scarce. Current understanding of the terminal Acheulean in southern Africa derives from a small number of localities that are predominantly in the central and northern interior. Many of these localities are surface and deflated contexts, others were excavated prior to the availability of modern field documentation techniques, and yet other relevant assemblages contain low numbers of characteristic artifacts relative to volume of excavated deposit. The site of Montagu Cave, situated in the diverse ecosystem of the Cape Floral Region, South Africa, contains the rare combination of archaeologically rich, laminated and deeply stratified Acheulean layers followed by a younger Middle Stone Age occupation. Yet little is known about the site owing largely to a lack of contextual information associated with the early excavations. Here we present renewed excavation of Levels 21-22 at Montagu Cave, located in the basal Acheulean sequence, including new data on site formation and ecological context, geochronology, and technological variability. We document intensive occupation of the cave by Acheulean tool-producing hominins, likely at the onset of interglacial conditions in MIS 7. New excavations at Montagu Cave suggest that, while Middle Stone Age technologies were practiced by 300 ka in several other regions of Africa, the classic Acheulean persisted later in the Fynbos Biome of the southwestern Cape. We discuss the implications of this regionalized persistence for the biogeography of African later Middle Pleistocene hominin populations, for the ecological drivers of their technological systems, and for the pattern and pace of behavioral change just prior to the proliferation of the southern African later Middle Stone Age.

20.
J Hum Evol ; 184: 103426, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769373

RESUMEN

Paranthropus boisei is well represented in the eastern African fossil record by craniodental remains, but very few postcranial fossils can be securely attributed to this taxon. For this reason, KNM-ER 1500 from East Turkana, Kenya, is especially important. KNM-ER 1500 is a badly weathered and fragmented postcranial skeleton associated with a small piece of mandibular corpus. It derives from the Burgi Member, which has yielded diagnostic craniodental fossils attributable to P. boisei, Homo habilis, Homo rudolfensis and Homo erectus. Although it has been proposed that KNM-ER 1500 may be attributable to P. boisei based on the small mandibular fragment, this hypothesis remained challenging to test. Here we re-examine the preserved portions of KNM-ER 1500 and reassess support for its taxonomic attribution. There are compelling features of the mandible, proximal femur, and especially the proximal radius that support attribution of KNM-ER 1500 to P. boisei. These features include the absolute width of the mandible and its lack of a lateral intertoral sulcus, an anteroposteriorly compressed femoral neck with a distinctive posteroinferior marginal ridge, the rim of the radial head that is proximodistally uniform in thickness around its circumference, and a long radial neck that is elliptical in cross section. No feature serves to align KNM-ER 1500 with Homo to the exclusion of Paranthropus. KNM-ER 1500 was a small-bodied individual and attributing this specimen to P. boisei confirms that significant postcranial-size dimorphism was present in this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...