RESUMEN
Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs). HSs constitute a macrocomponent of natural non-living organic matter of aquatic and soil ecosystems, formed and transformed in the processes of mineralization of bio-organic substances in environmental conditions. Analysis of the main mechanisms of their influence on each other and the effects produced that accelerate or inhibit polymer degradation can create the basis for scientifically based approaches to the most effective solution to the problem of degradation of SPs, including in the form of microplastics. This review is aimed at comparing various aspects of interactions of SPs, MOs, and HSs in laboratory experiments (in vitro) and environmental investigations (in situ) aimed at the biodegradation of polymers, as well as pollutants (antibiotics and pesticides) that they absorb. Comparative calculations of the degradation velocity of different SPs in different environments are presented. A special place in the analysis is given to the elemental chemical composition of HSs, which are most successfully involved in the biodegradation of SPs. In addition, the role of photo-oxidation and photoaging of polymers under the influence of the ultraviolet spectrum of solar radiation under environmental conditions on the (bio)degradation of SPs in the presence of HSs is discussed.
RESUMEN
In recent years, increasing attention has been paid to the possibility of converting waste materials, e.g. manure, bio-waste, green waste, waste from the water and sewage industries (e.g. post-fermentation sludge), and agri-food waste into biochars (BCs) by pyrolysis. The ability of biochar to improve soil health and fertility is driving growing interest in its use as a soil amendment. A high soil stability of BCs and their excellent nutrient sorption properties are the main reasons for the superiority of such materials over other organic soil amendments. In addition, BCs can retain soil-relevant compounds, including humic substances (HSs). Since most of the resources used to produce humic fertilisers are non-renewable, the effluent from anaerobic digestion of sewage sludge (reject water, RW), which contains high levels of HSs, is considered a promising target for their recovery. In this study, the potential of ten BCs derived from pine, oak, straw, sunflower, and digestate at different pyrolysis temperatures for the recovery of HSs from RW was evaluated. The sorption of HSs on the applied BCs was conducted using contact method for 24 h and then determined spectrophotometrically. The most effective sorbents for HSs from RW were BCs obtained from straw in the low and high temperatures with the sorption capacity of 3.10 mg g-1 and 5.31 mg g-1, respectively. It was observed that the BCs produced from the same biomass at different pyrolysis temperatures had different sorption capacities for FA, HA, and a mixture of these compounds. The results indicated that BCs obtained from sunflower at different temperatures and oak at high temperature were the most promising sorbents for the recovery of HSs from RW. Such materials have the potential to be applied to soil and were selected for further evaluation due to their ability to enhance soil quality and immobilize pollutants. Further studies will assess their effectiveness in different soil conditions, their stability and persistence, and their impact on plant health and growth.
RESUMEN
Phosphorus (P) has been widely recognized as a substance that is difficult to transport due to its tendency to become easily fixed in the soil. However, many reports demonstrate that groundwater P pollution is rising in humus-rich areas. Research is urgently needed to confirm (or reject) the hypothesis that increased P pollution is related to humus, as there is currently limited quantitative research on this topic. In this study, we conducted a series of batch equilibrium adsorption-desorption experiments and column experiments to quantify the effects of montmorillonite colloids (MCs) and humic acids (HCs, the main components of humus) on the P transport behavior. The results indicate that P's adsorption and desorption behavior on MCs can be well simulated using the Langmuir and Temkin models (R2 > 0.91). Compared to the non-HC treatments, HCs significantly increased MCs' P adsorption and desorption capacity 5.18 and 7.21 times, respectively. Moreover, HCs facilitated the transport ability of the MC-P mixture through the saturated quartz sand column. In a 0.1 M NaCl solution, the MC-P mixture is nearly completely adsorbed on the surface of quartz sand, with a penetration rate of only 0.5%. In contrast, the HC-MC-P mixture can evidently penetrate further at a rate of 26.1%. The transport parameters fitted using HYDRUS-1D further indicated that the presence of humic acids significantly decreased the deposition coefficients of colloids, thereby enhancing the co-transport of colloids and P through the quartz sand porous medium. The potential mechanism of P pollution in humus-rich areas is likely enhanced by the formation of an HC-colloid-P mixture, which greatly increases the adsorption amount of P on colloids and enhances the electrostatic and spatial repulsion between colloids as well as between colloids and quartz sand. It reduces the aggregation and adsorption of colloids, ultimately transferring P into groundwater through colloid-facilitated co-transport. The findings of this study clarified the relationship between the transport of P, colloids, and HCs, which provides a theoretical basis for explaining the P pollution mechanism in humus-rich areas.
Asunto(s)
Coloides , Agua Subterránea , Sustancias Húmicas , Fósforo , Coloides/química , Fósforo/química , Adsorción , Agua Subterránea/química , Porosidad , Bentonita/química , Suelo/química , Contaminantes Químicos del Agua/químicaRESUMEN
Humic acids (HAs) would be excessively released during thermal hydrolysis pretreatment (THP) and deeply disturb anaerobic digestion (AD) of waste activated sludge (WAS). The molecular weights of HAs could affect HAs entering microbial cells, binding with digestive enzymes and participating in electron transfer, thereby determining its influences on sludge AD. Results in this study confirmed the different influences of HAs from diverse sources on sludge AD indeed had significant correlations with their molecular weights. The presence of commercial HAs (SAHA) inhibited methane production by 53.3% at 0.5 g/L while HAs extracted from raw sludge (WNHA) increased methane production by 20.5% at the same concentration, which attribute to the comprehensive impacts from their differences in functional group compositions and molecular weights. Moreover, comparing to WNHA, the HAs extracted from thermally hydrolyzed sludge (THHA) showed unchanged functional group compositions but reduced methane generation facilitation to 5.1%, which only be due to its decreased molecular weights. In-depth research indicated that HAs influences on enzymes were closely relative to its molecular weight. HAs with greater molecular weights presented more significant inhibition to extracellular enzymes while micromolecular HAs affected intracellular enzymes more. Furthermore, macromolecular HAs promoted sludge solubilization and acidification but hindered hydrolysis and methanogenesis, whereas micromolecular HAs promoted acidification but inhibited methanogenesis. This study underscored the importance of changes in molecular weight of HAs during sludge THP, offering insights into previous discrepancies in reports on HAs effects on sludge AD.
RESUMEN
Thermal hydrolysis (TH) is promising for sludge pretreatment, but the refractory substances generated at high temperatures inhibit anaerobic digestion. In this study, a novel combined TH and photocatalytic pretreatment method was proposed to improve the anaerobic digestion performance of waste activated sludge. The results showed that the combined pretreatment (170 °C, 0.5 g/L TiO2) increased methane yield by 66 % from 111 ± 5 m L/g VS to 185 ± 5 m L/g VS. After TH pretreatment, photocatalysis further promoted sludge solubilization by destroying extracellular polymeric substances, resulting in an increase in released soluble organic matter from 292 ± 16 mg/L to 4,091 ± 85 mg/L. In addition, photocatalysis improved the biodegradability of sludge by reducing the melanoidin and humic acid contents by 26 % and 20 %, respectively. The proposed novel pretreatment method effectively overcomes the bottleneck of TH technology and provides an alternative pretreatment technology for improving sludge resource recovery.
Asunto(s)
Metano , Aguas del Alcantarillado , Hidrólisis , Anaerobiosis , Catálisis , Biodegradación Ambiental , Temperatura , Solubilidad , Análisis de la Demanda Biológica de OxígenoRESUMEN
Some biostimulant products provide proven benefits to plant production, potentially offering more environmentally friendly, sustainable, and natural inputs into production systems. However, the transference and predictability of known benefits between different growth environments, application protocols, and management systems are fraught with difficulty. In this study, we carried out carefully controlled glasshouse and in vitro assays with applications of humic acids, protein hydrolysates, and seaweed extract to compare the variability of biostimulant effects and dosage-dependent variations across diverse conditions, encompassing a sufficient range to comprehensively assess their full spectrum of impacts. The results demonstrated a clear trend of dosage-dependent effects with each biostimulant exhibiting a significant growth-promoting effect within a critical concentration range, but detrimental effects when the concentration fell outside this range. While substantial growth-promoting effects were observed under glasshouse conditions, biostimulant applications tended to be more sensitive and generally led to negative impacts in sterilised conditions. The combined use of biostimulants mostly resulted in detrimental and toxicological responses with only two combined treatments showing marginal synergistic effects. The findings demonstrated a complex interplay between biostimulants and the growth conditions of plants. Lack of knowledge of the indirect effects of different growth media may result in negative impacts of biostimulant applications and combinations of products outside narrow critical concentration ranges.
RESUMEN
Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.
Asunto(s)
Cucumis sativus , Sustancias Húmicas , Estrés Salino , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Salinidad , Agricultura/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismoRESUMEN
The robustness of the anaerobic ammonia oxidation (anammox) process in treating wastewater with high concentrations of humic acids (HAs), including landfill leachate and sludge anaerobic digestion liquid, has been paid great attention. This study revealed that the anammox sludge granule size of 1.0-2.0 mm could be robust under the HA exposure with high concentrations. The total nitrogen removal efficiency (NRE) was 96.2% at the HA concentration of 20-100 mg/L, while the NRE was 88.5% at the HA concentration of 500 mg/L, with reduced by 7.7%. The increased extracellular polymeric substances (EPS) content which was stimulated by the HA exposure favored the formation of large granules (1.0-2.0 mm) by enveloping medium and micro granules (0.2-1.0 mm). The abundance of anammox bacteria Candidatus Brocadia was found to be higher (14.2%) in large anammox granules sized 1.0-2.0 mm, suggesting a potentially high anammox activity. However, the abundance of denitrifiers Denitratisoma increased by 4.3% in ultra-large anammox granules sized >2.0 mm, which could be attributed to the high EPS content for heterotrophic denitrifiers metabolism as organic matter. The feedback mechanism of the anammox community for maintaining the ecological function under the HA exposure resulted in a closely related microbial community, with positive and negative correlations in the ecological network increased by 64.3%. This study revealed that the HA exposure of the anammox system resulted in the anammox granules of 1.0-2.0 mm size being the dominant granules with robust nitrogen removal, providing significant guidance for the optimization of anammox granules for an efficient treatment of HA-containing wastewater in anammox applications.
Asunto(s)
Reactores Biológicos , Sustancias Húmicas , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Bacterias/metabolismo , Amoníaco/metabolismo , Aguas Residuales/química , Microbiota , Desnitrificación , Matriz Extracelular de Sustancias Poliméricas/metabolismoRESUMEN
Humic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6â¯%. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.
Asunto(s)
Biodegradación Ambiental , Sustancias Húmicas , Microbiología del Suelo , Streptomyces , Zea mays , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Streptomyces/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Suelo/química , Lacasa/metabolismo , Metabolómica , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/microbiologíaRESUMEN
To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.
Asunto(s)
Carbón Orgánico , Sustancias Húmicas , Metano , Carbón Orgánico/química , Carbón Orgánico/farmacología , Anaerobiosis , Metano/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Reactores BiológicosRESUMEN
Maize (Zea mays L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.
RESUMEN
AIMS: Understanding the inhibitory effects of natural organic substances on soil-borne pathogenic fungi and the relevant molecular mechanisms are highly important for future development of green prevention and control technology against soil-borne diseases. Our study elucidates the inhibitory effect of the combined application of humic acids (HAs) and chitosan on Alternariasolani and the light on the corresponding mechanism. METHODS AND RESULTS: The effect on A. solani growth by HAs incorporated with chitosan was investigated by plate culture and the corresponding mechanism was revealed using transcriptomics. The colony growth of A. solani was suppressed with the highest inhibition rate 33.33% when swine manure HAs was compounded with chitosan at a ratio of 1:4. Chitosan changed the colony morphology from round to irregularly. RNA-seq in the HAs and chitosan (HC) treatment revealed 239 differentially expressed genes compared with the control. The unigenes associated with enzymes activities related to growth and biological processes closely related to mycelial growth and metabolism were downregulated. RNA-seq also revealed that chitosan altered the expression of genes related to secondary metabolism, fungal cell wall formation and polysaccharide synthesis, and metabolism. Meanwhile, weighted gene co-expression network analysis showed that, genes expression in the module positively correlated with mycelial growth was significantly reduced in the HC treatment; and the results were verified by real-time quantitative polymerase chain reaction. CONCLUSIONS: The co-inhibition effect of HAs and chitosan on A. solani is associated with downregulated genes expression correlated with mycelial growth.
Asunto(s)
Alternaria , Quitosano , Perfilación de la Expresión Génica , Sustancias Húmicas , Quitosano/farmacología , Alternaria/efectos de los fármacos , Alternaria/genética , Alternaria/crecimiento & desarrollo , Animales , Transcriptoma , Porcinos , Estiércol/microbiología , Microbiología del Suelo , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/genéticaRESUMEN
Hydrochar, a sustainable fertilizer rich in humic substances, is made from lignocellulose through hydrothermal conversion. However, hydrothermal humification (HTH) is challenged by low yields and limited selectivity in the resulting hydrochar. This study proved humic-like acids production can be enhanced under fast non-catalytic conditions (260 â¼ 280 °C, 0 â¼ 1 h). A higher yield (by 14.1 %) and selectivity (by 40.2 %) in hydrochar of humic-like acids than conventional HTH (ï¼250 °C) were achieved. Meanwhile, decreased lignin derivatives, carbonyl and quinone groups, as well as increased sp2-C structures in the humic-like acids were observed. The synthesized humic-like acids exhibited a lower degree of aromatization and a higher molecular weight than commercial variants. Two pathways of humic-like acids formation of self-polymerization and the development of branched sidechains were hypothesized based on mass mitigation, carbon flow and aqueous phase compositions. This research contributes a novel approach to producing humic-like acids rich hydrochar for environmentally friendly fertilizer production.
Asunto(s)
Sustancias Húmicas , Polimerizacion , Zea mays , Zea mays/química , Lignina , Fertilizantes , Agua/química , TemperaturaRESUMEN
Humic substances as major components of waste activated sludge are refractory to degrade and have inhibition in traditional anaerobic digestion (AD). This study for the first time investigated the feasibility and mechanism of microbial electrolysis cell assisted anaerobic digestion (MEC-AD) to break the recalcitrance and inhibition of humic substances. The cumulative methane production of AD decreased from 134.7 to 117.6 mL/g-VS with the addition of humic acids and fulvic acids at 25.2-102.1 mg/g-VS. However, 0.6 V MEC-AD maintained stable methane production (155.5-158.2 mL/g-VS) under the effect of humic substances. 0.6 V MEC-AD formed electrical stimulation on microbial cells, provided anodic oxidation and cathodic reduction transformation pathways for humic substances (acting as carbon sources and electron shuttles), and aggregated functional microorganisms on electrodes, facilitating the degradation of humic substances and generation of methane. This study provides a theoretical basis for improving the energy recovery and system stability of sludge treatment.
Asunto(s)
Electrólisis , Sustancias Húmicas , Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Metano/metabolismo , Anaerobiosis , Electrodos , Benzopiranos , Reactores BiológicosRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in soil and water, but fluorescence spectroscopy for PAHs is often interfered with organic matter in the environment. The aim of this paper is to evaluate a correction method using combined spectral technology in an environment where humic acids and PAHs coexist. In the present work, humic acids and benzo[ghi]perylene were analyzed in various concentrations using fluorescence and near-infrared (NIR) spectroscopy from single and mixed samples. The NIR prediction model of humic acids in mixed samples was established based on synergy interval partial least squares, and the standard curve of fluorescence spectra for humic acids was established at 478 nm (characteristic wavelength of benzo[ghi]perylene). The fluorescence intensity of humic acids in the mixed sample was predicted from the content derived from the NIR spectra. The final correction was carried out by their exclusion from the fluorescence of the mixture at the same wavelength. The corrected fluorescence intensity was linearly correlated with the concentration of benzo[ghi]perylene with R2 = 0.8362, while R2 = 0.3538 before correction. These results give a new insight into the calibration modeling of the combined spectral method.
RESUMEN
The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.
Asunto(s)
Bacillus licheniformis , Bario , Biomineralización , Calcio , Magnesio , Magnesio/metabolismo , Bacillus licheniformis/metabolismo , Bario/metabolismo , Calcio/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Iones , Anhidrasas Carbónicas/metabolismo , Carbonato de Calcio/metabolismoRESUMEN
The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.
Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Sustancias Húmicas/análisis , Suelo/química , Microbiología del Suelo , Herbicidas/química , Contaminantes del Suelo/químicaRESUMEN
Humic acids (HA) are ubiquitous in surface waters, leading to significant fouling challenges. While zwitterion-like and zwitterionic surfaces have emerged as promising candidates for antifouling, a quantitative understanding of molecular interaction mechanism, particularly at the nanoscale, still remains elusive. In this work, the intermolecular forces between HA and charged, zwitterion-like or zwitterionic monolayers in aqueous environments were quantified using atomic force microscope. Compared to cationic MTAC ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), which exhibited an adhesion energy of â¼1.342 mJ/m2 with HA due to the synergistic effect of electrostatic attraction and possible cation-π interaction, anionic SPMA (3-sulfopropyl methacrylate) showed a weaker adhesion energy (â¼0.258 mJ/m2) attributed to the electrostatic repulsion. Zwitterion-like MTAC/SPMA mixture, driven by electrostatic attraction between opposite charges, formed a hydration layer that prevented the interaction with HA, thereby considerably reducing adhesion energy to â¼0.123 mJ/m2. In contrast, zwitterionic MPC (2-methacryloyloxyethyl phosphorylcholine) and DMAPS ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) displayed ultralow adhesion energy (0.06-0.07 mJ/m2) with HA, arising from their strong dipole moments which could induce a tight hydration layer that effectively inhibited HA fouling. The pH-mediated electrostatic interaction resulted in the increased adhesion energy for MTAC but decreased adhesion energy for SPMA with elevated pH, while the adhesion energy for zwitterion-like and zwitterionic surfaces was independent of environmental pH. Density functional theory (DFT) simulation confirmed the strong binding capability of MPC and DMAPS with water molecules (â¼-12 kcal mol-1). This work provides valuable insights into the molecular interaction mechanisms underlying humic-substance-fouling resistance of charged, zwitterion-like and zwitterionic materials at the nanoscale, shedding light on developing more effective strategy for HA antifouling in water treatment.
RESUMEN
Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.
Asunto(s)
Fertilizantes , Sustancias Húmicas , Suelo , Zea mays , Sustancias Húmicas/análisis , Suelo/química , Zea mays/crecimiento & desarrollo , República de Corea , Agricultura/métodosRESUMEN
A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.