Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255712

RESUMEN

It has been reported that hyaluronic acid (HA) with a 35 kDa molecular weight (HA35) acts biologically to protect tissue from injury, but its biological properties are not yet fully characterized. This study aimed to evaluate the cellular effects and biodistribution of HA35 compared to HA with a 1600 kDa molecular weight (HA1600). We assessed the effects of HA35 and HA1600 on cell migration, NO and ROS generation, and gene expression in cultured macrophages, microglia, and lymphocytes. HA35 was separately radiolabeled with 99mTc and 125I and administered to C57BL/6J mice for in vivo biodistribution imaging. In vitro studies indicated that HA35 and HA1600 similarly enhanced cell migration through HA receptor binding mechanisms, reduced the generation of NO and ROS, and upregulated gene expression profiles related to cell signaling pathways in immune cells. HA35 showed a more pronounced effect in regulating a broader range of genes in macrophages and microglia than HA1600. Upon intradermal or intravenous administration, radiolabeled HA35 rapidly accumulated in the liver, spleen, and lymph nodes. In conclusion, HA35 not only exhibits effects on cellular bioactivity comparable to those of HA1600 but also exerts biological effects on a broader range of immune cell gene expression. The findings herein offer valuable insights for further research into the therapeutic potential of HA35 in inflammation-mediated tissue injury.

2.
Antioxidants (Basel) ; 12(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107200

RESUMEN

Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.

3.
Front Immunol ; 14: 1127828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936902

RESUMEN

Renal cell carcinoma (RCC) is associated with high mortality rates worldwide and survival among RCC patients has not improved significantly in the past few years. A better understanding of the pathogenesis of RCC can enable the development of more effective therapeutic strategies against RCC. Hyaluronan (HA) is a glycosaminoglycan located in the extracellular matrix (ECM) that has several roles in biology, medicine, and physiological processes, such as tissue homeostasis and angiogenesis. Dysregulated HA and its receptors play important roles in fundamental cellular and molecular biology processes such as cell signaling, immune modulation, tumor progression and angiogenesis. There is emerging evidence that alterations in the production of HA regulate RCC development, thereby acting as important biomarkers as well as specific therapeutic targets. Therefore, targeting HA or combining it with other therapies are promising therapeutic strategies. In this Review, we summarize the available data on the role of abnormal regulation of HA and speculate on its potential as a therapeutic target against RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Ácido Hialurónico , Biomarcadores , Matriz Extracelular , Neoplasias Renales/etiología
4.
Matrix Biol ; 109: 173-191, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35405271

RESUMEN

Hyaluronan (HA) is an extracellular matrix component that regulates a variety of physiological and pathological processes. The function of HA depends both on its overall amount and on its size, properties that are controlled by HA synthesizing and degrading enzymes. The lack of inhibitors that can specifically block individual HA degrading enzymes has hampered attempts to understand the contribution of individual hyaluronidases to different physiological and pathological processes. CEMIP is a recently discovered hyaluronidase that cleaves HA through mechanisms and under conditions that are distinct from those of other hyaluronidases such as HYAL1 or HYAL2. The role of its hyaluronidase activity in physiology and disease is poorly understood. Here, we characterized a series of sulfated HA derivatives (sHA) with different sizes and degrees of sulfation for their ability to inhibit specific hyaluronidases. We found that highly sulfated sHA derivatives potently inhibited CEMIP hyaluronidase activity. One of these compounds, designated here as sHA3.7, was characterized further and shown to inhibit CEMIP with considerable selectivity over other hyaluronidases. Inhibition of CEMIP with sHA3.7 in fibroblasts, which are the main producers of HA in the interstitial matrix, increased the cellular levels of total and high molecular weight HA, while decreasing the fraction of low molecular weight HA fragments. Genetic deletion of CEMIP in mouse embryonic fibroblasts (MEFs) produced analogous results and confirmed that the effects of sHA3.7 on HA levels were mediated by CEMIP inhibition. Importantly, both CEMIP deletion and its inhibition by sHA3.7 suppressed fibroblast proliferation, while promoting differentiation into myofibroblasts, as reflected in a lack of CEMIP in myofibroblasts within skin wounds in experimental mice. By contrast, adipogenic and osteogenic differentiation were attenuated upon CEMIP loss or inhibition. Our results demonstrate the importance of CEMIP for the HA metabolism, proliferation and differentiation of fibroblasts, and suggest that inhibition of CEMIP with sulfated HA derivatives such as sHA3.7 has potential utility in pathological conditions that are dependent on CEMIP function.


Asunto(s)
Ácido Hialurónico , Hialuronoglucosaminidasa , Animales , Proliferación Celular , Fibroblastos/metabolismo , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Hialuronoglucosaminidasa/metabolismo , Ratones , Osteogénesis , Sulfatos/metabolismo , Sulfatos/farmacología
5.
Biomedicines ; 9(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680561

RESUMEN

Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons' subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between "machine perfusion (MP)-yes" vs. "MP-no"; "brain-death (DBD) vs. donation-after-circulatory-death (DCD)"; "early-allograft-dysfunction (EAD)-yes" vs. "EAD-no" groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the "EAD-yes" compared to the "EAD-no" group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.

6.
Front Cell Dev Biol ; 9: 709018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552927

RESUMEN

Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are covalently attached to core proteins to form proteoglycans. More than 50 gene products are involved in the biosynthesis of GAGs. We recently developed a comprehensive glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan structures based on gene expression profiles. Using this tool, the expression levels of GAG biosynthetic genes were analyzed in various human tissues as well as tumor tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be up- and down-regulated, respectively, which are consistent with biochemical findings published in the literature. In addition, the expression levels of the chondroitin sulfate-proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and down-regulated, respectively. These findings may provide new insight into GAG profiles in various human diseases including cancerous tumors as well as neurodegenerative disease using GlycoMaple analysis.

7.
Biol Chem ; 402(11): 1441-1452, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34280958

RESUMEN

Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-ß by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-ß. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-ß. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-ß can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-ß signaling system in angiogenesis and related disease conditions.


Asunto(s)
Ácido Hialurónico/química , Factor de Crecimiento Derivado de Plaquetas/química , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/química , Conformación de Carbohidratos , Humanos , Modelos Moleculares , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie
8.
J Clin Med ; 10(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923501

RESUMEN

The described research focused on the diagnostic usefulness of sulfated glycosaminoglycans (sGAG), hyaluronan (HA), and extracellular part of syndecan-1 (sCD138) as new markers related to extracellular matrix (ECM) remodeling in the intestine during the two most common forms of inflammatory bowel diseases (IBD), i.e., ulcerative colitis (UC) and Crohn' disease (CD). Inflammatory markers belonging to ECM components were assessed in serum of patients with IBD using an immunoenzymatic method (HA and sCD138) and a method based on the reaction with dimethylmethylene blue (sulfated GAG). Measurements were carried out twice: at baseline and after one year of therapy with prednisone (patients with CD) or adalimumab (patients with UC). No quantitative changes were observed in serum sGAG, HA, and sCD138 concentrations between patients newly diagnosed with CD and the healthy group. In the case of patients with UC, the parameter which significantly differentiated healthy subjects and patients with IBD before biological therapy was HA. Significant correlation between serum HA level and inflammation activity, expressed as Mayo score, was also observed in patients with UC. Moreover, the obtained results have confirmed that steroid therapy with prednisone significantly influenced the circulating profile of all examined ECM components (sGAG, HA, and sCD138), whereas adalimumab therapy in patients with UC led to a significant change in only circulating sGAG levels. Moreover, the significant differences in serum HA levels between patients with UC and CD indicate that quantification of circulating HA may be useful in the differential diagnosis of CD and UC.

9.
Curr Top Med Chem ; 21(2): 126-139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32962617

RESUMEN

Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44-targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies, including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as an NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progress of HA-based multidrug nano-carriers for combination cancer therapy is summarized and the potential challenges for translational applications have been discussed.


Asunto(s)
Antineoplásicos/farmacología , Ácido Hialurónico/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Neoplasias/patología
10.
ACS Appl Bio Mater ; 4(1): 494-506, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014301

RESUMEN

In order to restore the regeneration capacity of large-size vascularized tissue defects, innovative biomaterial concepts are required. Vascular endothelial growth factor (VEGF165) is a key factor of angiogenesis interacting with sulfated glycosaminoglycans (sGAG) within the extracellular matrix. As this interplay mainly controls and directs the biological activity of VEGF165, we used chemically modified sGAG derivatives to evaluate the structural requirements of sGAG for controlling and tuning VEGF165 function and to translate these findings into the design of biomaterials. The in-depth analysis of this interaction by surface plasmon resonance and ELISA studies in combination with molecular modeling stressed the relevance of the substitution position, degree of sulfation, and carbohydrate backbone of GAG. Acrylated hyaluronan (HA-AC)/collagen (coll)-based hydrogels containing cross-linked acrylated, sulfated hyaluronan (sHA-AC) derivatives with different substitution patterns or an acrylated chondroitin sulfate (CS-AC) derivative function as multivalent carbohydrate-based scaffolds for VEGF165 delivery with multiple tuning capacities. Depending on the substitution pattern of sGAG, the release of biologically active VEGF165 was retarded in a defined manner compared to pure HA/coll gels, which further controlled the VEGF165-induced stimulation of endothelial cell proliferation and extended morphology of cells. This indicates that sGAG can act as modulators of protein interaction profiles of HA/coll hydrogels. In addition, sHA-AC-containing gels with and even without VEGF165 strongly stimulate endothelial cell proliferation compared to gels containing only CS-AC or HA-AC. Thus, HA/coll-based hydrogels containing cross-linked sHA-AC are biomimetic materials able to directly influence endothelial cells in vitro, which might translate into an improved healing of injured vascularized tissues.


Asunto(s)
Colágeno/química , Glicosaminoglicanos/química , Ácido Hialurónico/química , Hidrogeles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glicosaminoglicanos/metabolismo , Hidrogeles/farmacología , Microscopía Fluorescente , Unión Proteica , Sulfatos/química , Porcinos , Factor A de Crecimiento Endotelial Vascular/química
11.
ACS Appl Mater Interfaces ; 12(36): 40108-40120, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32808527

RESUMEN

The repair of the central nervous system (CNS) is a major challenge because of the difficulty for neurons or axons to regenerate after damages. Injectable hydrogels have been developed to deliver drugs or cells for neural repair, but these hydrogels usually require conditional stimuli or additional catalysts to control the gelling process. Self-healing hydrogels, which can be injected locally to fill tissue defects after stable gelation, are attractive candidates for CNS treatment. In the current study, the self-healing hydrogel with a semi-interpenetrating polymer network (SIPN) was prepared by incorporation of hyaluronan (HA) into the chitosan-based self-healing hydrogel. The addition of HA allowed the hydrogel to pass through a narrow needle much more easily. As the HA content increased, the hydrogel showed a more packed nanostructure and a more porous microstructure verified by coherent small-angle X-ray scattering and scanning electron microscopy. The unique structure of SIPN hydrogel enhanced the spreading, migration, proliferation, and differentiation of encapsulated neural stem cells in vitro. Compared to the pristine chitosan-based self-healing hydrogel, the SIPN hydrogel showed better biocompatibility, CNS injury repair, and functional recovery evaluated by the traumatic brain injury zebrafish model and intracerebral hemorrhage rat model. We proposed that the SIPN of HA and chitosan self-healing hydrogel allowed an adaptable environment for cell spreading and migration and had the potential as an injectable defect support for CNS repair.


Asunto(s)
Materiales Biocompatibles/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Sistema Nervioso Central/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Quitosano/farmacología , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Quitosano/química , Modelos Animales de Enfermedad , Ácido Hialurónico/química , Hidrogeles/síntesis química , Hidrogeles/química , Masculino , Ratones , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Pez Cebra
12.
Biomaterials ; 257: 120226, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32736256

RESUMEN

The regeneration of smooth muscle with physiological functions has been a key challenge in vascular tissue engineering. Hyaluronan (HA), as a major component of the extracellular matrix, plays a vital role in regulating tissue injury and repair. In this study, a biomimetic vascular graft was prepared by co-electrospinning of synthetic degradable polymers and native ECM components including collagen type-I as well as low and high molecular weight HA (LMW HA and HMW HA). Upon implantation in the rat abdominal aorta, the grafts exhibited sustained HA release that effectively enhanced the regeneration of vascular smooth muscle. Besides, LMW HA loaded vascular grafts demonstrated rapid endothelialization compared to the other groups. More importantly, HA-loaded poly(L-lactide-co-caprolactone) grafts demonstrated an optimal vascular media layer accompanied by well-organized elastin fibers after long-term implantation (6 months), and they maintained potent physiological function up to 1/3 that of the native artery. In contrast, inadequate smooth muscle regeneration was observed in poly(ε-caprolactone) grafts due to slow degradation restricting the regeneration. The mechanism was further investigated and explained by the HA-induced migration of smooth muscle cell (SMC) via CD44-mediated signaling. Besides, low molecular weight HA can promote the migration of vascular progenitor cells that further differentiate into SMCs. These results highlight the importance of HA in the regeneration of functional vascular smooth muscle, and provide a new insight into the fabrication of tissue engineering vascular grafts (TEVGs) via combining rapidly degradable polymers and bioactive ECM components that hold great translational potential.


Asunto(s)
Ácido Hialurónico , Músculo Liso Vascular , Animales , Prótesis Vascular , Miocitos del Músculo Liso , Poliésteres , Ratas , Regeneración , Ingeniería de Tejidos
13.
Front Oncol ; 9: 492, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293964

RESUMEN

Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20-25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.

14.
Carbohydr Res ; 478: 25-32, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31042589

RESUMEN

Polysaccharide peptides (or protein-bound polysaccharides, PSPs) are commonly found in mushrooms and plants and possess important nutritional properties and health benefits. The pathogenic bacterium Streptococcus zooepidemicus does not inherently produce PSPs but secretes the capsular polysaccharide hyaluronan. However, in a previous investigation of the catalytic mechanism of UDP-glucose dehydrogenase (UGDH), a PSP of peptide-bound hyaluronan was found to be produced by S. zooepidemicus through the in vivo expression of a mutant of the gene encoding UGDH. In the present study, this hyaluronan-derived PSP was structurally characterized by FT-IR, NMR, and high-performance liquid chromatography-mass spectrometry (HPLC-MS), and the data confirmed that the polysaccharide backbone, hyaluronan, is covalently bound to the side-chain peptides via an amide linkage. More importantly, the bacterial production of a PSP via this genetic modification method should inspire further research on the in vitro enzymatic synthesis of PSPs or even naturally occurring polysaccharide derivatives and may provide a theoretical foundation for investigating the in vivo synthetic mechanism of PSPs.


Asunto(s)
Ácido Hialurónico/biosíntesis , Proteoglicanos/biosíntesis , Streptococcus equi/metabolismo , Conformación de Carbohidratos , Ácido Hialurónico/química , Ácido Hialurónico/aislamiento & purificación , Proteoglicanos/química , Proteoglicanos/aislamiento & purificación , Streptococcus equi/genética
15.
Int J Biol Macromol ; 119: 726-740, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30031078

RESUMEN

Hyaluronan (HA) is an important extracellular matrix component in the early stage of chondrogenesis. This study aimed to investigate the application of an HA microenvironment for human adipose-derived stem cells (hADSCs)-based articular cartilage regeneration. HA-enriched fibrin (HA/Fibrin) hydrogels were synthesized and characterized for use as HA microenvironments. The cell viability and chondrogenic gene expression of hADSCs cultured in HA/Fibrin (HA/Fibrin/hADSC) and Fibrin (Fibrin/hADSC) hydrogels were tested in vitro. A chondral defect created in osteochondral core explants ex vivo was used to test chondral defect regeneration by HA/Fibrin/hADSC or Fibrin/hADSC hydrogels. The results showed that HA/Fibrin hydrogels exhibited an increased swelling ratio and matrix stiffness and a smoother surface with more interconnected pores than in Fibrin hydrogels. The viability of hADSCs in HA/Fibrin/hADSC hydrogels was not altered, but they exhibited higher chondrogenic gene expression than those in Fibrin/hADSC hydrogels. For chondral defect regeneration, the HA/Fibrin/hADSC hydrogels exhibited the most cartilaginous tissue neo-formation, chondral integration and sGAG content in the surrounding tissue. This study demonstrated that an HA microenvironment enhances hADSC-mediated cartilage regeneration in chondral defects and thus may be used for ADSC-based articular cartilage tissue engineering.


Asunto(s)
Microambiente Celular , Condrogénesis , Ácido Hialurónico/metabolismo , Regeneración , Células Madre/citología , Células Madre/fisiología , Tejido Adiposo/citología , Animales , Biomarcadores , Cartílago Articular/metabolismo , Cartílago Articular/patología , Diferenciación Celular , Supervivencia Celular , Fibrina/metabolismo , Humanos , Hidrólisis , Inmunofenotipificación , Porcinos , Porcinos Enanos
16.
Oncotarget ; 9(12): 10784-10807, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535843

RESUMEN

Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.

17.
Acta Biomater ; 66: 224-237, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29128538

RESUMEN

Hyaluronan (HA) is a natural linear polymer that is one of the main types of extracellular matrix during the early stage of chondrogenesis. We found that the chondrogenesis of adipose-derived stem cells (ADSCs) can be initiated and promoted by the application of HA to mimic the chondrogenic niche. The aim of this study is to investigate the optimal HA molecular weight (Mw) for chondrogenesis of ADSCs and the detailed mechanism. In this study, we investigated the relationships among HA Mw, CD44 clustering, and the extracellular signal-regulated kinase (ERK)/SOX-9 pathway during chondrogenesis of ADSCs. Human ADSCs (hADSCs) and rabbit ADSCs (rADSCs) were isolated and expanded. Chondrogenesis was induced in rADSCs by culturing cells in HA-coated wells (HA Mw: 80 kDa, 600 kDa and 2000 kDa) and evaluated by examining cell aggregation, chondrogenic gene expression (collagen type II and aggrecan) and sulfated glycosaminoglycan (sGAG) deposition in vitro. Cartilaginous tissue formation in vivo was confirmed by implanting HA/rADSCs into joint cavities. CD44 clustering, ERK phosphorylation, SOX-9 expression and SOX-9 phosphorylation in cultured hADSCs were further evaluated. Isolated and expanded rADSCs showed multilineage potential and anchorage-independent growth properties. Cell aggregation, chondrogenic gene expression, and sGAG deposition increased with increasing HA Mw in rADSCs. The 2000 kDa HA had the most pronounced chondrogenic effect on rADSCs in vitro, and implanted 2000 kDa HA/rADSCs exhibited marked cartilaginous tissue formation in vivo. CD44 clustering and cell aggregation of hADSCs were enhanced by an increase in HA Mw. In addition, higher HA Mws further enhanced CD44 clustering, ERK phosphorylation, and SOX-9 expression and phosphorylation in hADSCs. Inhibiting CD44 clustering in hADSCs reduced HA-induced chondrogenic gene expression. Inhibiting ERK phosphorylation also simultaneously attenuated HA-induced SOX-9 expression and phosphorylation and chondrogenic gene expression in hADSCs. Our results indicate that HA initiates ADSC chondrogenesis and that higher Mw HAs exhibit stronger effects, with 2000 kDa HA having the strongest effect. These effects may be mediated through increased CD44 clustering and the ERK/SOX-9 signaling pathway. STATEMENT OF SIGNIFICANCE: HA-based biomaterials have been studied in stem cell-based articular cartilage tissue engineering. However, little is known about the optimal HA size for stem cell chondrogenesis and the mechanism of how HA size modulates stem cell chondrogenesis. Accordingly, we used HAs with various Mws (80-2000 kDa) as culture substrates and tested their chondrogenic effect on ADSCs. Our results demonstrated that HAs with a Mw of 2000 kDa showed the optimal effect for chondrogenesis of ADSCs. Moreover, we found that HA size can regulate ADSC chondrogenesis via the CD44/ERK/SOX-9 pathway. This finding provides new information regarding the biochemical control of chondrogenesis by HA substrates that may add value to the development of HA-based biomaterials for articular cartilage regeneration.


Asunto(s)
Tejido Adiposo/citología , Condrogénesis/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Animales , Butadienos/farmacología , Cartílago/efectos de los fármacos , Cartílago/crecimiento & desarrollo , Agregación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Condrogénesis/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peso Molecular , Nitrilos/farmacología , Nistatina/farmacología , Fosforilación/efectos de los fármacos , Conejos
18.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837080

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor composed by a genotypically and phenotypically heterogeneous population of neoplastic cells types. High recurrence rate and regional metastases lead to major morbidity and mortality. Recently, many studies have focused on cellular and molecular mechanisms of tumor progression that can help to predict prognosis and to choose the best therapeutic approach for HNSCC patients. Hyaluronan (HA), an important glycosaminoglycan component of the extracellular matrix (ECM), and its major cell surface receptor, CD44, have been suggested to be important cellular mediators influencing tumor progression and treatment resistance in head and neck cancer. HNSCC contains a small subpopulation of cells that exhibit a hallmark of CD44-expressing cancer stem cell (CSC) properties with self-renewal, multipotency, and a unique potential for tumor initiation. HA has been shown to stimulate a variety of CSC functions including self-renewal, clone formation and differentiation. This review article will present current evidence for the existence of a unique small population of CD44v3highALDHhigh-expressing CSCs in HNSCC. A special focus will be placed on the role of HA/CD44-induced oncogenic signaling and histone methyltransferase, DOT1L activities in regulating histone modifications (via epigenetic changes) and miRNA activation. Many of these events are essential for the CSC properties such as Nanog/Oct4/Sox2 expression, spheroid/clone formation, self-renewal, tumor cell migration/invasion, survival and chemotherapeutic drug resistance in HA-activated head and neck cancer. These newly-discovered HA/CD44-mediated oncogenic signaling pathways delineate unique tumor dynamics with implications for defining the drivers of HNSCC progression processes. Most importantly, the important knowledge obtained from HA/CD44-regulated CSC signaling and functional activation could provide new information regarding the design of novel drug targets to overcome current therapeutic drug resistance which will have significant treatment implications for head and neck cancer patients.


Asunto(s)
Resistencia a Antineoplásicos/genética , Epigénesis Genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Familia de Aldehído Deshidrogenasa 1 , Animales , Biomarcadores , Progresión de la Enfermedad , Matriz Extracelular , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ácido Hialurónico/química , Isoenzimas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , Unión Proteica , Retinal-Deshidrogenasa/metabolismo
19.
Macromol Biosci ; 17(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28683182

RESUMEN

Innovative biomaterial-based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammatory factors, collagen fibrils are embedded into a network of photo-crosslinked acrylated hyaluronan (HA), chondroitin sulfate (CS), or sulfated HA (sHA). After lyophilization, the gels show a porous structure and an improved stability against degradation via hyaluronidase. Gels with CS and sHA bind significantly more lysozyme than HA/collagen gels and retard its release. The proliferation and metabolic activity of endothelial cells are significantly increased on sHA gels compared to CS- or only HA-containing hydrogels. These findings highlight the potential of HA/collagen hydrogels with sulfated glycosaminoglycans to tune the protein binding and release behavior and to directly modulate cellular response. This can be easily translated into biomimetic biomaterials with defined properties to stimulate wound healing.


Asunto(s)
Colágeno/farmacología , Células Endoteliales/citología , Ácido Hialurónico/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Regeneración/efectos de los fármacos , Sulfatos/farmacología , Acrilatos/química , Animales , Bovinos , Proliferación Celular/efectos de los fármacos , Forma de la Célula , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glicosaminoglicanos/química , Humanos , Hialuronoglucosaminidasa/metabolismo , Hidrogeles/síntesis química , Hidrogeles/química , Muramidasa/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Sus scrofa
20.
Biomaterials ; 101: 10-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27262027

RESUMEN

We here report smart hyaluronidase-actived theranostic nanoparticles based on hyaluronic acid (HA) coupled with chlorin e6 (Ce6) via adipic dihydrazide (ADH) forming HA-ADH-Ce6 conjugates and self-assembling into HACE NPs. The resulting nanoparticles showed stable nano-structure in aqueous condition with uniform size distribution and can be actively disassembled in the presence of hyaluronidase (over-expressed in tumor cells), exhibiting hyaluronidase-responsive "OFF/ON" behavior of fluorescence signal. The HACE NPs were rapidly taken up to human lung cancer cells A549 via CD44 (the HA receptor on the surface of tumor cells) receptor mediated endocytosis. Upon laser irradiation, the HACE NPs realized good near-infrared fluorescence imaging and photoacoustic imaging in the tumor bearing mice, which showed 5-fold higher fluorescence intensity and 3-fold higher photoacoustic (PA) intensity than free Ce6, respectively. In addition, under low dose of laser power, the HACE NPs presented more effective photodynamic therapy to suppression of tumor growth than free Ce6 in vitro and in vivo. Overall, these results suggest that the well-defined HACE NPs is a biocompatible theranostic nanoplatform for in vivo dual-modal tumor imaging and phototherapy simultaneously.


Asunto(s)
Hialuronoglucosaminidasa/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Clorofilidas , Femenino , Humanos , Ácido Hialurónico/metabolismo , Ácido Hialurónico/uso terapéutico , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Nanopartículas/metabolismo , Imagen Óptica/métodos , Técnicas Fotoacústicas/métodos , Fármacos Fotosensibilizantes/metabolismo , Porfirinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...