RESUMEN
The toxicity of organic molecules and transition metal cations imposes their removal from aqueous medium to protect human health. Traditionally, systems have been designed to target either organic molecules or transition metal cations individually. However, a homogenous poly(chitosan-N-vinylcaprolactam-methacrylic acid) P(CVM) microgel system has been introduced to effectively eliminate both types of pollutants. This P(CVM) system was synthesized using the free radical precipitation polymerization (FRPP) method and employed as an adsorbent for the removal of silver (I) (Ag(I)) ions from aqueous medium under various environments, including different Ag(I) ions content, agitation times, pH levels, and dose of P(CVM). The extraction behavior of Ag(I) ions onto P(CVM) was analyzed using different adsorption isotherms, while the kinetics of the process were studied using Elovich model (ElM), pseudo-second-order (Ps2O), intra-particle-diffusion model (InPDM), and pseudo-first-order (Ps1O) models. Furthermore, silver nanoparticles (Ag NPs) were synthesized by using loaded Ag(I) ions within P(CVM) through in-situ reduction approach. The resulting Ag nanoparticles decorated P(CVM) (Ag-P(CVM)) hybrid microgels exhibited the ability to catalytically reduce various contaminants from water such as p-nitroaniline (PNiA), methyl red (MeR), chromium (VI) ions (CrM), and eosin Y (EoY). The catalytic activity was measured by determining the pseudo-first-order rate constant (kap), which were found to be 1.166 min-1, 0.562 min-1, 0.157 min-1, and 1.350 min-1 for the catalytic reduction of PNiA, MeR, CrM, and EoY, respectively. Overall, the Ag-P(CVM) system shows superb catalytic activity for various pollutants reduction.
RESUMEN
Conversion of toxic nitroarenes into less toxic aryl amines, which are the most suitable precursors for different types of compounds, is done with various materials which are costly or take more time for this conversion. In this regards, a silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) Si@P(CS-NIPAM-MAA) Si@P(CNM) core-shell microgel system was synthesized through free radical precipitation polymerization (FRPP) and then fabricated with palladium nanoparticles (Pd NPs) by in situ-reduction method to form Si@Pd-P(CNM) and characterized with XRD, TEM, FTIR, SEM, and EDX. The catalytic efficiency of Si@Pd-P(CNM) hybrid microgels was studied for reduction of 4-nitroaniline (4NiA) under diverse conditions. Different nitroarenes were successfully transformed into their corresponding aryl amines with high yields using the Si@Pd-P(CNM) system as catalyst and NaBH4 as reductant. The Si@Pd-P(CNM) catalyst exhibited remarkable catalytic efficiency and recyclability as well as maintaining its catalytic effectiveness over multiple cycles.
Asunto(s)
Acrilamidas , Quitosano , Nanopartículas del Metal , Paladio , Dióxido de Silicio , Paladio/química , Catálisis , Dióxido de Silicio/química , Quitosano/química , Nanopartículas del Metal/química , Acrilamidas/química , Microgeles/química , Oxidación-Reducción , Metacrilatos/químicaRESUMEN
Most of the transition metal ions and organic dyes are toxic in nature. Therefore, their removal from water is imperative for human health. For this purpose, various types of systems have been developed to tackle either transition metal ions or organic dyes individually. A core-shell microgel system is introduced which is capable of effectively removing both types (toxic organic dyes and transition metal ions) of pollutants. A long-rod-shaped silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) S@P(CS-NIPAM-MAA) S@P(CNM) core-shell microgel system was developed by free radical precipitation polymerization method (FRPPM). S@P(CNM) was utilized as an adsorbent for extracting palladium (II) (Pd (II)) ions from water under different concentrations of S@P(CNM), several agitation times, palladium (II) ion content, and pH levels. The adsorption data of Pd (II) ions on S@P(CNM) was evaluated by various adsorption isotherms. The kinetic study was investigated by employing pseudo-2nd order (Ps2O), Elovich model (ElM), intra-particle diffusion (IPDM), and pseudo-1st order (Ps1O). Additionally, palladium nanoparticles (Pd NPs) were generated via in-situ reduction of adsorbed Pd (II) ions within the P(CNM) shell region of S@P(CNM). The resulting Pd NPs loaded S@P(CNM) exhibited the capability to reduce organic pollutants like methyl orange (MeO), 4-nitrophenol (4NiP), methylene blue (MeB), and Rhodamine B (RhB) from aqueous medium. 0.766 min-1, 0.433 min-1, 0.682 min-1, and 1.140 min-1 were the values of pseudo 1st order rate constant (kobs) for catalytic reduction of MeB, 4NiP, MeO, and RhB respectively. The S@Pd-P(CNM) system exhibits significant catalytic potential for various organic transformations.
Asunto(s)
Quitosano , Nanopartículas del Metal , Paladio , Dióxido de Silicio , Contaminantes Químicos del Agua , Paladio/química , Quitosano/química , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Nanopartículas del Metal/química , Cinética , Acrilamidas/química , Geles/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Metacrilatos/química , Iones/químicaRESUMEN
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Asunto(s)
Quitosano , Microgeles , Microgeles/química , Quitosano/química , Geles/química , Catálisis , NanotecnologíaRESUMEN
Palladium nanoparticles (Pd) combined with smart polymer microgels have attracted significant interest in the past decade. These hybrid materials have unique properties that make them appealing for various applications in biology, environmental remediation, and catalysis. The responsive nature of the microgels in these hybrids holds great promise for a wide range of applications. The literature contains diverse morphologies and architectures of Pd nanoparticle-based hybrid microgels, and the architecture of these hybrids plays a vital role in determining their potential uses. Therefore, specific Pd nanoparticle-based hybrid microgels are designed for specific applications. This report provides an overview of recent advancements in the classification, synthesis, properties, characterization, and uses of Pd nanostructures loaded into microgels. Additionally, the report discusses the latest progress in biomedical, catalytic, environmental, and sensing applications of Pd-based hybrid microgels in a tutorial manner.
RESUMEN
Herein, folic acid conjugated poly (NIPAM-co-functional palygorskite-Au-co-acrylic acid) (FA-PNFA) hybrid microgels were fabricated by emulsion polymerization. The introduction of acrylic acid can increase the low critical solution temperature (LCST) of FA-PNFA from 36 °C at pH 5.5-42 °C at pH 7.4. Doxorubicin hydrochloride (DOX) was chosen as the load drug, the results show that the DOX release behavior is driven by temperature, pH and light. Cumulative drug release rate can reach 74 % at 37 °C and pH 5.5 while only 20 % at 37 °C and pH 7.4, which effectively avoided the early leakage of the drug. In addition, by exposing FA-PNFA hybrid microgels to laser irradiation, the cumulative release rate was increased by 5 % compared to the release rate under dark conditions. Functional palygorskite-Au as physical crosslinkers not only improves the drug loading content of microgels but also promotes the release of DOX through light drive. Methyl thiazolyl tetrazolium bromide (MTT) assay demonstrated that the FA-PNFA are nontoxic up to 200 µg mL-1 towards 4T1 breast cancer cell. Meanwhile, DOX-loaded FA-PNFA show more significant cytotoxicity than the free DOX. Confocal laser scanning microscope (CLSM) revealed that the DOX-loaded FA-PNFA could be efficiently taken by 4T1 breast cancer cells. FA-PNFA hybrid microgels not only improve the LCST of PNIPAM, but also endow the microgels with photostimulation responsiveness, which can release drugs in response to the triple stimulation response of temperature, pH and light, thus effectively reducing the activity of cancer cells, making them more promising for wider medical applications.
Asunto(s)
Neoplasias de la Mama , Microgeles , Humanos , Femenino , Portadores de Fármacos/química , Temperatura , Ácido Fólico/química , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/farmacología , Doxorrubicina/química , Concentración de Iones de HidrógenoRESUMEN
The past decades have witnessed the development of various stimuli-responsive materials with tailored functionalities, enabling droplet manipulation through external force fields. Among different strategies, light exhibits excellent flexibility for contactless control of droplets, particularly in three-dimensional space. Here, we present a facile synthesis of plasmonic hybrid microgels based on the electrostatic heterocoagulation between cationic microgels and anionic Au nanoparticles. The hybrid microgels are effective stabilizers of oil-in-water Pickering emulsions. In addition, the laser irradiation on Au nanoparticles creats a "cascade effect" to thermally responsive microgels, which triggers a change in microgel wettability, resulting in microgel desorption and emulsion destabilization. More importantly, the localized heating generated by a focused laser induces the generation of a vapor bubble inside oil droplets, leading to the formation of a novel air-in-oil-in-water (A/O/W) emulsion. These A/O/W droplets are able to mimic natural microswimmers in an aqueous environment by tracking the motion of a laser spot, thus achieving on-demand droplet merging and chemical communication between isolated droplets. Such proposed systems are expected to extend the applications of microgel-stabilized Pickering emulsions for substance transport, programmed release and controlled catalytic reactions.
RESUMEN
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.
Asunto(s)
Técnicas Analíticas Microfluídicas , Microgeles , Células Neoplásicas Circulantes , Humanos , Separación Celular/métodos , Microfluídica , Separación Inmunomagnética/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Fenómenos Magnéticos , Técnicas Analíticas Microfluídicas/métodosRESUMEN
Poly(styrene-N-isopropylmethacrylamide-methacrylic acid) core-shell [P(SNM)CS] microgel particles were synthesised by seed-mediated emulsion polymerisation method. Silver nanoparticles were loaded into shell of P(SNM)CS microgels by in situ reduction of Ag+ ions. Synthesised core-shell microgels and hybrid core-shell microgels were characterised by using Fourier transformed infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV-Visible spectroscopy and Dynamic light scattering (DLS). Stability of Ag nanoparticles within P(SNM)CS system was also investigated over the time using UV-Visible spectroscopy. Catalytic properties of silver nanoparticles loaded microgel system [Ag-P(SNM)CS] were studied by reducing Eosin-Y and Methylene blue with NaBH4 in water. The values of observed rate constant (kobs) were determined under different reaction conditions. The hybrid system was capable to degrade both dyes and may be used for degradation of several other toxic chemicals efficiently.
Asunto(s)
Nanopartículas del Metal , Microgeles , Polímeros/química , Plata/química , Nanopartículas del Metal/química , Hidrogeles , CatálisisRESUMEN
Dental caries remains one of the most prevalent bacterium-caused chronic diseases affecting both adults and children worldwide. The development of new materials for enhancing its remineralization is one of the most promising approaches in the field of advanced dental materials as well as one of the main challenges in non-invasive dentistry. The aim of the present study is to develop novel hybrid materials based on (PDMAEMA)/Carbomer 940 microgels with in situ deposited calcium phosphates (CaP) and to reveal their potential as a remineralization system for artificial caries lesions. To this purpose, novel PDMAEMA/Carbomer 940 microgels were obtained and their core-shell structure was revealed by transmission electron microscopy (TEM). They were successfully used as a matrix for in situ calcium phosphate deposition, thus giving rise to novel hybrid microgels. The calcium phosphate phases formed during the deposition process were studied by X-ray diffraction and infrared spectroscopy, however, due to their highly amorphous nature, the nuclear magnetic resonance (NMR) was the method that was able to provide reliable information about the formed inorganic phases. The novel hybrid microgels were used for remineralization of artificial caries lesions in order to prove their ability to initiate their remineralization. The remineralization process was followed by scanning electron microscopy (SEM), X-ray diffraction, infrared and Raman spectroscopies and all these methods confirmed the successful enamel rod remineralization upon the novel hybrid microgel application. Thus, the study confirmed that novel hybrid microgels, which could ensure a constant supply of calcium and phosphate ions, are a viable solution for early caries treatment.
RESUMEN
Polymer microgels loaded with inorganic nanoparticles have gained much attention as catalytic systems for reduction of toxic chemicals. Enhanced catalytic properties of hybrid microgels are related to the stimuli responsive nature of microgels and extraordinary stability of nanoparticles within network of polymer microgels. Catalytic properties of hybrid microgels can be tuned very easily by slight variation in environmental conditions. Herein we have reviewed catalytic reduction of toxic chemicals such as nitroarenes and organic dyes in the presence of appropriate hybrid microgel catalytic systems under different operating conditions of reaction. Recent advancements in catalytic behavior of hybrid microgels with special emphasis on their ability to catalytically degrade various toxic chemicals has been presented in this review.
Asunto(s)
Colorantes/química , Colorantes/aislamiento & purificación , Microgeles/química , Nitrocompuestos/química , Nitrocompuestos/aislamiento & purificación , Procesos Fotoquímicos , Agua/química , CatálisisRESUMEN
In this work, a detailed rheological study of hybrid poly(acrylamide-co-acrylic acid) P(AAm-co-AAc) aqueous microgel dispersions is performed. Our intention is to understand how the presence of gold nanoparticles, AuNP, embedded within the microgel matrix, affects the viscoelastic properties, the colloidal gel structure formation, and the structure recovery after cessation of the deformation of the aqueous microgel dispersions. Frequency sweep experiments confirmed that hybrid microgel dispersions present a gel-like behavior and that the presence of AuNP content within microgel matrix contributes to the elasticity of the microgel dispersions. Strain sweep test confirmed that hybrid microgels aqueous dispersion also form colloidal gel structures that break upon deformation but that can be recovered when the deformation decreases. The fractal analysis performed to hybrid microgels, by applying Shih et al. and Wu and Morbidelli's scaling theories, evidenced that AuNP significantly affects the colloidal gel structure configuration ending up with the formation of agglomerates or microgel clusters with closer structures in comparison to the reference P(AAm-co-AAc) aqueous microgel dispersions.
RESUMEN
In this study, poly(N-isopropylmethacrylamide-co-methacrylic acid) microgels prepared by free radical precipitation polymerization were used as micro-reactors for the synthesis and stabilization of silver nanoparticles. UV-Visible spectroscopy, Transmission Electron Microscopy and Fourier-transform infrared spectroscopy were used to characterize both pure and hybrid microgels. The catalytic reduction of 4-nitroaniline was carried out in the presence of hybrid microgels to test their catalytic activity, and the catalysis mechanism was explored by varying the concentrations of reacting species like 4-nitroaniline and NaBH4, as well as the dose of the catalyst. The kinetic data indicates that this reaction follows pseudo-first order. The variation in apparent rate constant (kapp) with respect to NaBH4 concentration also discloses it to be the following Langmuir-Hinshelwood mechanism. The relationship between catalyst concentration and apparent rate constant was found to be increasing in a linear manner. The data obtained also confirmed that silver nanoparticles loaded microgels have the potential to be used as an excellent micro-reactor for selective reduction of 4-nitroaniline to p-phenylenediamine.
Asunto(s)
Nanopartículas del Metal , Plata , Compuestos de Anilina , CatálisisRESUMEN
Silver nanoparticles with average diameter of 10±3nm were synthesized within the sieves of poly(N-isopropylacrylamide-2-hydroxyethylmethacrylate-acrylic acid) (p(NIPAAm-HEMA-AAc)) polymer microgels. Free radial emulsion polymerization was employed for synthesis of p(NIPAAm-HEMA-AAc) polymer microgels. Silver nanoparticles were introduced within the microgels sphere by in situ reduction method. Microgels and hybrid microgels were characterized by Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy, transmission electron microscopy and dynamic light scattering measurements. Catalytic activity of Ag-p(NIPAAm-HEMA-AAc) hybrid microgels was studied using catalytic reduction of 4-nitrophenol (4-NP) as a model reaction in aqueous media. The influence of sodium borohydride (NaBH4) concentration, catalyst dose and 4-NP concentration on catalytic reduction of 4-NP was investigated. A linear relationship was found between catalyst dose and apparent rate constant (kapp). The mechanism of catalysis by hybrid microgels was explored for further development in this area. The deep analysis of catalytic process reveals that the unique combination of NIPAAm, HEMA and AAc does not only stabilize silver nanoparticles in polymer network but it also enhances the mass transport of hydrophilic substrate like 4-NP from outside to inside the polymer network.
Asunto(s)
Nanopartículas del Metal/química , Modelos Químicos , Nitrofenoles/química , Plata/químicaRESUMEN
Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.
Asunto(s)
Nanopartículas del Metal/química , Metales Pesados/química , Polímeros/síntesis química , Catálisis , Geles/síntesis química , Geles/química , Cinética , Polímeros/química , Espectrofotometría UltravioletaRESUMEN
We synthesize and characterize stimulus-responsive nanocomposites consisting of poly( N-isopropylacrylamide) (PNIPAM) with controlled loadings of anisotropic plate-like silver nanoprisms. These composites show strong, reversible switching of their optical extinction and scattering properties in response to temperature cycling. We use UV-vis-NIR spectroscopy and dynamic light scattering to characterize the hybrids and show that the loading density of the silver nanoprisms in the polymer and the size of the nanoprisms are both factors that can be used to tailor the optical response of the composites, extending the range of colors beyond that previously reported with PNIPAM/plasmonic nanoparticle composites. These PNIPAM/silver nanoprism hybrids exhibit thermochromic shifts that are 5-10 times larger than those typically reported for similar structures of PNIPAM composites with silver nanoparticles of a comparable range of loading density. In addition, we show that these composites can exhibit very large ratiometric changes in scattering in the NIR, which could open applications for related materials in thermal management and NIR labeling and taggants.
RESUMEN
One strategy that has gained much attention in the last decades is the understanding and further mimicking of structures and behaviours found in nature, as inspiration to develop materials with additional functionalities. This review presents recent advances in stimuli-responsive gels with emphasis on functional hydrogels and microgels. The first part of the review highlights the high impact of stimuli-responsive hydrogels in materials science. From macro to micro scale, the review also collects the most recent studies on the preparation of hybrid polymeric microgels composed of a nanoparticle (able to respond to external stimuli), encapsulated or grown into a stimuli-responsive matrix (microgel). This combination gave rise to interesting multi-responsive functional microgels and paved a new path for the preparation of multi-stimuli "smart" systems. Finally, special attention is focused on a new generation of functional stimuli-responsive polymer hydrogels able to self-shape (shape-memory) and/or self-repair. This last functionality could be considered as the closing loop for smart polymeric gels.
RESUMEN
Nanosized carbon dots (CDs) are emerging as superior fluorophores for biosensing and a bioimaging agent with excellent photostability, chemical inertness, and marginal cytotoxicity. This paper reports a facile one-pot strategy to immobilize the biocompatible and fluorescent CDs (â¼6 nm) into the glucose-imprinted poly(N-isopropylacrylamide-acrylamide-vinylphenylboronic acid) [poly(NIPAM-AAm-VPBA)] copolymer microgels for continuous optical glucose detection. The CDs designed with surface hydroxyl/carboxyl groups can form complexes with the AAm comonomers via hydrogen bonds and, thus, can be easily immobilized into the gel network during the polymerization reaction. The resultant glucose-imprinted hybrid microgels can reversibly swell and shrink in response to the variation of surrounding glucose concentration and correspondingly quench and recover the fluorescence signals of the embedded CDs, converting biochemical signals to optical signals. The highly imprinted hybrid microgels demonstrate much higher sensitivity and selectivity for glucose detection than the nonimprinted hybrid microgels over a clinically relevant range of 0-30 mM at physiological pH and benefited from the synergistic effects of the glucose molecular contour and the geometrical constraint of the binding sites dictated by the glucose imprinting process. The highly stable immobilization of CDs in the gel networks provides the hybrid microgels with excellent optical signal reproducibility after five repeated cycles of addition and dialysis removal of glucose in the bathing medium. In addition, the hybrid microgels show no effect on the cell viability in the tested concentration range of 25-100 µg/mL. The glucose-imprinted poly(NIPAM-AAm-VPBA)-CDs hybrid microgels demonstrate a great promise for a new glucose sensor that can continuously monitor glucose level change.