RESUMEN
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
RESUMEN
Group 1 innate lymphoid cells (ILCs), comprising ILC1s and natural killer cells (NK cells), belong to a large family of developmentally related innate lymphoid cells that lack rearranged antigen-specific receptors. NK cells and ILC1s both require the transcription factor T-bet for lineage commitment but additionally rely on Eomes and Hobit, respectively, for their development and effector maturation programs. Both ILC1s and NK cells are essential for rapid responses against infections and mediate cancer immunity through production of effector cytokines and cytotoxicity mediators. ILC1s are enriched in tissues and hence generally considered tissue resident cells whereas NK cells are often considered circulatory. Despite being deemed different cell types, ILC1s and NK cells share many common features both phenotypically and functionally. Recent studies employing single cell RNA sequencing (scRNA-seq) technology have exposed previously unappreciated heterogeneity in group 1 ILCs and further broaden our understanding of these cells. Findings from these studies imply that ILC1s in different tissues and organs share a common signature but exhibit some unique characteristics, possibly stemming from tissue imprinting. Also, data from recent fate mapping studies employing Hobit, RORγt, and polychromic reporter mice have greatly advanced our understanding of the developmental and effector maturation programs of these cells. In this review, we aim to outline the fundamental traits of mouse group 1 ILCs and explore recent discoveries related to their developmental programs, phenotypic heterogeneity, plasticity, and transcriptional regulation.
Asunto(s)
Plasticidad de la Célula , Regulación de la Expresión Génica , Inmunidad Innata , Células Asesinas Naturales , Animales , Humanos , Plasticidad de la Célula/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Transcripción Genética , Linfocitos/inmunología , Linfocitos/metabolismo , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismoRESUMEN
BACKGROUND: Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE: In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS: Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS: Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION: Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Asunto(s)
Colitis , Flavanonas , Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Flavanonas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Linfocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Masculino , Scutellaria baicalensis/química , Mucosa Intestinal/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Colon/efectos de los fármacosRESUMEN
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Células Asesinas Naturales , InflamaciónRESUMEN
OBJECTIVE: Innate lymphoid cells (ILCs) are a class of newly discovered immunocytes. Group 1 ILCs (ILC1s) are identified in the decidua of humans and mice. High mobility group box 1 (HMGB1) is predicted to be one of the target genes of miR-142-3p, which is closely related to pregnancy-related diseases. Furthermore, miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway. This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway. METHODS: Mouse models of normal pregnancy and abortion were constructed, and the alterations of ILC1s, miR-142-3p, ILC1 transcription factor (T-bet), and pro-inflammatory cytokines of ILC1s (TNF-α, IFN-γ and IL-2) were detected in mice from different groups. The targeting regulation of HMGB1 by miR-142-3p in ILC1s, and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated. In addition, the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8, Annexin-V/PI, ELISA, and RT-PCR, respectively. Furthermore, changes of the NF-κB signaling pathway in ILC1s were examined in the different groups. For the in vivo studies, miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface, and further detect the expression of HMGB1, pro-inflammatory cytokines, and the NF-κB signaling pathway. RESULTS: The number of ILC1s was significantly increased, the level of HMGB1 was significantly upregulated, and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice (all P<0.05). In addition, miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway (P<0.05). The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group (all P<0.05). CONCLUSION: miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway, and attenuate the inflammation at the maternal-fetal interface in abortive mice.
Asunto(s)
Aborto Espontáneo , Proteína HMGB1 , MicroARNs , Animales , Femenino , Ratones , Embarazo , Aborto Espontáneo/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inmunidad Innata , Linfocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismoRESUMEN
Introduction: The three groups of helper innate lymphoid cells (ILCs), namely ILC1, ILC2 and ILC3, have been identified by flow cytometry by combinations of cell surface markers. Here, we review various ways ILCs are currently identified, focusing on potential problems and their solutions. The first step to identify all ILCs is to exclude other lymphocytes and myeloid cells by their lineage-specific markers (Lin). However, the Lin cocktail varies in various studies, and the definition of Lin- population containing ILCs is often ambiguous, resulting in contamination of Lin+ cells, particularly T cells. Method: We have designed combinations of cell surface markers to identify ILC populations in various tissues of B6 mice by flow cytometry. To minimize T cell contamination, TCR/CD3ϵ antibodies were used separately from the Lin cocktail. ILCs identified by surface markers are confirmed by the expression of the transcription factors GATA3, RORγt, T-bet and Eomes. Result: ILC1s in the B6 mouse liver are identified by Lin-NKp46+NK1.1+TCR/CD3ϵ-CD49a+CD49b-. However, defining ILC1s in other tissues remains a challenge. ILC2s in the lung are identified by Lin-TCR/CD3ϵ- Thy1+CD127+ST2+ whereas ILC2s in the small intestine and liver are identified by Lin-TCR/CD3ϵ-Thy1+GATA3+RORγt-. ILC3s in B6 mouse spleen, liver, lung and small intestine are identified by Lin-TCR/CD3ϵ- Thy1+CD127+RORγt+. Discussion: The ILC population is heterogeneous and the strategies to identify ILCs have to be designed for each ILC population and tissue. Excluding T cells in all cases is crucial, and a combination of transcription factors GATA3, RORγt, T-bet, and Eomes should be used to identify ILCs. Using CD3ϵ/TCRs in a different fluorochrome not in Lin cocktail minimizes contamination of T cells specifically identify individual ILC populations in various tissues.
Asunto(s)
Inmunidad Innata , Linfocitos , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Citometría de Flujo , Factores de Transcripción , Receptores de Antígenos de Linfocitos TRESUMEN
Natural killer (NK) cells are innate immune cells critical for protective immune responses against infection and cancer. Although NK cells differentiate in the bone marrow (BM) in an interleukin-15 (IL-15)-dependent manner, the cellular source of IL-15 remains elusive. Using NK cell reporter mice, we show that NK cells are localized in the BM in scattered and clustered manners. NK cell clusters overlap with monocyte and dendritic cell accumulations, whereas scattered NK cells require CXCR4 signaling. Using cell-specific IL-15-deficient mice, we show that hematopoietic cells, but not stromal cells, support NK cell development in the BM through IL-15. In particular, IL-15 produced by monocytes and dendritic cells appears to contribute to NK cell development. These results demonstrate that hematopoietic cells are the IL-15 niche for NK cell development in the BM and that BM NK cells are present in scattered and clustered compartments by different mechanisms, suggesting their distinct functions in the immune response.
Asunto(s)
Médula Ósea , Interleucina-15 , Ratones , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Asesinas NaturalesRESUMEN
Group 1 innate lymphoid cells (G1-ILCs), including circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s), are innate immune sentinels critical for responses against infection and cancer. In contrast to relatively uniform NK cells through the body, diverse ILC1 subsets have been characterized across and within tissues in mice, but their developmental and functional heterogeneity remain unsolved. Here, using multimodal in vivo approaches including fate-mapping and targeting of the interleukin 15 (IL-15)-producing microenvironment, we demonstrate that liver parenchymal niches support the development of a cytotoxic ILC1 subset lacking IL-7 receptor (7 R- ILC1s). During ontogeny, fetal liver (FL) G1-ILCs arise perivascularly and then differentiate into 7 R- ILC1s within sinusoids. Hepatocyte-derived IL-15 supports parenchymal development of FL G1-ILCs to maintain adult pool of 7 R- ILC1s. IL-7R+ (7R+) ILC1s in the liver, candidate precursors for 7 R- ILC1s, are not essential for 7 R- ILC1 development in physiological conditions. Functionally, 7 R- ILC1s exhibit killing activity at steady state through granzyme B expression, which is underpinned by constitutive mTOR activity, unlike NK cells with exogenous stimulation-dependent cytotoxicity. Our study reveals the unique ontogeny and functions of liver-specific ILC1s, providing a detailed interpretation of ILC1 heterogeneity.
Asunto(s)
Interleucina-15 , Linfocitos , Ratones , Animales , Linfocitos/metabolismo , Interleucina-15/metabolismo , Inmunidad Innata , Receptores de Interleucina-7/metabolismo , Células Asesinas Naturales , HígadoRESUMEN
Hypercaloric diets overactivate the intestinal immune system and disrupt the microbiome and epithelial cell functions, impairing glucose metabolism. The origins of this inflammatory cascade are poorly characterized. We investigated the involvement of intestinal proinflammatory group 1 innate lymphoid cells (ILC1s) in obesity progression and metabolic disruption. In obese mice, we studied longitudinally the ILC1s response to the diet and ILC1s depletion to address its role in obesity. ILC1s are required for the expansion of pro-inflammatory macrophages and ILC2s. ILC1s depletion induced the ILC3-IL-22 pathway, increasing mucin production, antimicrobial peptides, and neuroendocrine cells. These changes were translated into higher gut hormones and reduced insulinemia and adiposity. ILC1s depletion was also associated with a bloom in Akkermansia muciniphila and decreases in Bilophila spp. Intestinal-ILC1s are upstream activators of inflammatory signals, connecting immunity with the microbiome, the enteroendocrine system, and the intestinal barrier in the control of glucose metabolism and adiposity.
Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata , Ratones , Animales , Linfocitos/metabolismo , Obesidad/metabolismo , Inflamación , Macrófagos/metabolismo , GlucosaRESUMEN
Tissue-resident immune cells are critical to the initiation and potentiation of inflammation. However, the tissue-protective cellular communication networks initiated by resident immunity during sterile inflammation are not well understood. Using single-cell transcriptomic analysis, we show the liver-resident cell connectome and signalome during acute liver injury. These analyses identify Il12b as a central regulator of liver injury-associated changes in gene expression. Interleukin (IL)-12 produced by conventional type 1 dendritic cells (cDC1s) is required for protection during acute injury through activation of interferon (IFN)-γ production by liver-resident type 1 innate lymphoid cells (ILC1s). Using a targeted in vivo CRISPR-Cas9 screen of innate immune sensing pathways, we find that cDC1-intrinsic cGAS-STING signaling acts upstream of IL-12 production to initiate early protective immune responses. Our study identifies the core communication hubs initiated by tissue-resident innate immune cells during sterile inflammation in vivo and implicates cDC1-derived IL-12 as an important regulator of this process.
Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Linfocitos/metabolismo , Hígado/metabolismo , Inflamación , Nucleotidiltransferasas/metabolismo , Interleucina-12RESUMEN
Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-ß1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.
Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Células Endoteliales , Células Asesinas Naturales , Hígado , Factores de Transcripción , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.
Asunto(s)
Quimiocina CXCL12 , Accidente Cerebrovascular Isquémico , Células Asesinas Naturales , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CXCL12/metabolismo , Células Endoteliales , Inmunidad Innata , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Células Asesinas Naturales/metabolismo , LinfocitosRESUMEN
Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.
Asunto(s)
Inmunidad Innata , Linfocitos , Diferenciación Celular , Citocinas , Regulación de la Expresión Génica , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Células Asesinas Naturales , Linfocitos/inmunologíaRESUMEN
Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.
Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Ratones , Regulación de la Expresión Génica , Interferón gamma/metabolismo , Células Asesinas Naturales , Receptores de Ácido Retinoico/metabolismoRESUMEN
BACKGROUND: Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and kills more than 1.5 million people each year. METHODS: We examine the frequency and function of NK cells in the blood and airways over the course of Mtb infection in a TB macaque model and demonstrate differences in NK marker expression between the two compartments. Flow cytometry and intracellular cytokine staining were utilized to identify NK cell subsets (expressing NKG2A, CD56, or CD16) and function (IL-10, TNF, IL-2, IFN-g, IL-17, and CD107a). RESULTS: Blood and airway NK cell frequencies were similar during infection though there were differences in subset populations between blood and airway. Increased functional (cytokine/CD107a) parameters were observed in airway NK cells during the course of infection while none were seen in the blood. CONCLUSIONS: This study suggests that NK cells in the airway may play an important role in TB host response.
Asunto(s)
Células Asesinas Naturales , Tuberculosis Latente , Pulmón , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Animales , Citocinas/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Macaca , Mycobacterium tuberculosis/inmunología , Modelos Animales de Enfermedad , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/inmunología , Tuberculosis Latente/sangre , Tuberculosis Latente/inmunología , Pulmón/inmunologíaRESUMEN
BACKGROUND & AIMS: Liver contains high frequency of group 1 innate lymphoid cells (ILC), which are composed of comparable number of type 1 ILC (ILC1) and natural killer (NK) cells in steady state. Little is known about whether and how the interaction between ILC1 and NK cells affects the development of alcoholic liver disease. METHODS: A mouse model of chronic alcohol abuse plus single-binge (Gao-Binge model) was established. The levels of alanine aminotransferase/aspartate aminotransferase, hepatic lipid, and inflammatory cytokines or neutrophils were measured to evaluate the degree of liver injury, steatosis, and inflammation. Flow cytometric analysis, cell depletion, or adoptive transfer were used to interrogate the interaction between ILC1 and NK cells. RESULTS: Upon chronic alcohol consumption, NK cells, but not ILC1, underwent apoptosis, resulting in ILC1 dominance among group 1 ILC. Interleukin (IL) 17A expression was up-regulated, and increased IL17A was mainly derived from liver ILC1 after chronic alcohol feeding. Either depletion of ILC1 or neutralization of IL17A could significantly attenuate liver steatosis, inflammation, and injury in alcohol-fed mice. In contrast, normalization of the ILC1/NK cells ratio through NK cells transfer or expanding NK cells had a significant hepatoprotection against alcohol-induced steatohepatitis. Furthermore, NK cell-derived interferon gamma exerted a protective function via inhibiting IL17A production by liver ILC1 during alcoholic steatohepatitis. CONCLUSIONS: This is the first study showing that the interplay between liver ILC1 and NK cells occurs and drives the development of alcoholic steatohepatitis. Our findings support further exploration of liver ILC1 or NK cells as a therapeutic target for the treatment of alcohol-associated liver disease.
Asunto(s)
Hígado Graso Alcohólico , Hepatopatías Alcohólicas , Ratones , Animales , Inmunidad Innata , Células Asesinas Naturales , Inflamación/metabolismo , Etanol/toxicidadRESUMEN
Innate lymphoid cells (ILCs) are tissue-resident immune cells that have been recently implicated in initiating and driving anti-tumor responses. ILCs are classified into three main groups, namely type 1 ILCs (ILC1), type 2 ILCs, and type 3 ILCs. All three groups have been implicated in either eliciting pro or anti-tumor immune responses in different cancer subtypes with the consensus that ILCs cannot be overlooked within the field of anti-tumor immune responses. In this review, we will specifically expand on the knowledge on ILC1, their characterization, function, and plasticity in anti-cancer immune responses. Within this premise, we will discuss caveats of ILC1 characterization, and expand on the expression and function of immune checkpoint receptors within ILC1 subsets, specifically focusing on the role of programmed cell death-1 receptor in controlling specific ILC1 responses. We summarize that ILC1s are a vital component in initiating anti-tumor responses and can be boosted by checkpoint receptors.
RESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is one of the leading causes of mortality due to respiratory tract infections worldwide. Infection by M. tb involves activation of a type I immune response characteristic of T helper type 1 (Th1) lymphocytes, natural killer (NK) cells, Interleukin-12 (IL-12), and interferon (IFN)-γ, all of which stimulate the activation of macrophages and robust phagocytosis in order to prevent further infectious manifestations and systemic dissemination. Recent discoveries about innate lymphoid cells (ILCs) have provided further insight about how these cells participate within the protective immune response against M. tb infection and help boost the type I immune response. In order to clearly understand the mechanisms of M. tb infection and advance the efficacy of future treatment and prevention, we must first look at the individual functions each type of immune cell plays within this process, specifically ILCs. By review of the recent literature and current evidence, our group aims to summarize the characterization of the three major groups of ILCs, including NK cells, and analyze the role that each group of ILCs play in the infectious process against M. tb in order to provide a more comprehensive understanding of the host immune response. Equally, previous studies have also highlighted the effects of how administration of the Bacille Calmette-Guérin (BCG) vaccine influences the cells and cytokines of the immune response against M. tb. Our group also aims to highlight the effects that BCG vaccine has on ILCs and how these effects provide added protection against M. tb.
RESUMEN
The development of innate lymphoid cell (ILC) transcription factor reporter mice has shown a previously unexpected complexity in ILC hematopoiesis. Using novel polychromic mice to achieve higher phenotypic resolution, we have characterized bone marrow progenitors that are committed to the group 1 ILC lineage. These common ILC1/NK cell progenitors (ILC1/NKP), which we call "aceNKPs", are defined as lineage-Id2+IL-7Rα+CD25-α4ß7-NKG2A/C/E+Bcl11b-. In vitro, aceNKPs differentiate into group 1 ILCs, including NK-like cells that express Eomes without the requirement for IL-15, and produce IFN-γ and perforin upon IL-15 stimulation. Following reconstitution of Rag2-/-Il2rg-/- hosts, aceNKPs give rise to a spectrum of mature ILC1/NK cells (regardless of their tissue location) that cannot be clearly segregated into the traditional ILC1 and NK subsets, suggesting that group 1 ILCs constitute a dynamic continuum of ILCs that can develop from a common progenitor. In addition, aceNKP-derived ILC1/NK cells effectively ameliorate tumor burden in a model of lung metastasis, where they acquired a cytotoxic NK cell phenotype. Our results identify the primary ILC1/NK progenitor that lacks ILC2 or ILC3 potential and is strictly committed to ILC1/NK cell production irrespective of tissue homing.
Asunto(s)
Inmunidad Innata , Interleucina-15 , Animales , Ratones , Interleucina-15/genética , Células Asesinas Naturales , Perforina , Factores de Transcripción , Proteínas Represoras , Proteínas Supresoras de TumorRESUMEN
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are populations of non-T, non-B lymphocytes in peripheral tissues. Although NK and ILC1 subsets have been described, their identification and characteristics remain unclear. We performed single-cell RNA sequencing and CITE-seq to explore NK and ILC1 heterogeneity between tissues. We observed that although NK1 and NK2 subsets are conserved in spleen and liver, ILC1s are heterogeneous across tissues. We identified sets of genes expressed by related subsets or characterizing unique ILC1 populations in each organ. The syndecan-4 appeared as a marker discriminating murine ILC1 from NK cells across organs. Finally, we revealed that the expressions of EOMES, GZMA, IRF8, JAK1, NKG7, PLEK, PRF1, and ZEB2 define NK cells and that IL7R, LTB, and RGS1 differentiate ILC1s from NK cells in mice and humans. Our data constitute an important resource to improve our understanding of NK-ILC1 origin, phenotype, and biology.