RESUMEN
BACKGROUND: Childhood neurodegenerative diseases often pose a challenge to clinicians to diagnose because of the degree of genetic heterogeneity and variable presentations. Here, we present a child with progressive neurodegeneration consisting of spasticity, dystonia, and ataxia in which postmortem pathological analysis led to the diagnosis of interferon regulatory factor 2 binding protein like (IRF2BPL)-related disorder. METHODS: Detailed postmortem gross and histological examination was conducted, and findings consistent with dentatorubral-pallidoluysian atrophy (DRPLA) and included polyglutamine (polyQ) inclusions. Follow up testing for the CAG repeat expansion at ATN1 was non-diagnostic. RESULTS: Subsequent exome sequencing reanalysis of the research exome identified a pathogenic de novo IRF2BPL variant. The IRF2BPL c.562C>T, p.(Arg188Ter) variant, distal to the polyQ repeat tract, results in variable mRNA levels depending on the cell type examined with decreased mRNA in the brain, as well as destabilization of the protein product and corresponding downstream molecular abnormalities in patient derived cells. CONCLUSION: We provide the first detailed pathological description for IRF2BPL-related disorder, termed NEDAMSS (neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures; Mendelian Inheritance in Man, 618088) and evidence for the inclusion of this condition in the differential diagnosis of spastic-ataxic neurodegenerative conditions, reminiscent of DRPLA. Although the individuals with NEDAMSS do not carry an expansion, the polyQ repeat tract may play a role in the pathological inclusions that would represent a novel disease mechanism for polyQ repeats. © 2024 International Parkinson and Movement Disorder Society.
RESUMEN
Pathogenic variants in the IRF2BPL gene are associated with neurodevelopmental disorders with varying degrees of regression, loss of speech and epilepsy. The phenotype is also known as Neurodevelopmental Disorder with regression, Abnormal Movements, loss of Speech, and Seizures (NEDAMSS). The motor symptoms of this disorder share significant phenotypical characteristics with catatonia, a severe neuropsychiatric psychomotor syndrome. The objective of this article is to expand the knowledge on the presentation of NEDAMSS with a focus on psychiatric symptoms including catatonia. A systematic review of 32 case presentations of NEDAMSS, and a novel case report of a patient with NEDAMSS, exhibiting multiple psychiatric symptoms, including catatonia are presented. Psychiatric symptoms and disorders including affective disorders, psychotic symptoms, catatonia, and developmental disorders are reported in one third of the reviewed cases. Reported effects of pharmacological treatment on motor symptoms of NEDAMSS are very limited. Our case presents improvement in motor symptoms originally attributed to NEDAMSS, after treatment with Lorazepam following diagnosis with catatonia. Patients with NEDAMSS may present with both neurological and psychiatric symptoms. The clinical presentation of NEDAMSS motor symptoms and catatonia have similarities and thus poses significant challenges to the diagnostic process, with risk of incorrect or delayed treatment. The limited experience and the complex phenotype of NEDAMSS complicates pharmacological treatment and encourages caution, especially with the use of antipsychotic drugs in the presence of possible catatonic symptoms.
RESUMEN
Recently a broad range of phenotypic abnormalities related to the neurodevelopmental and neurodegenerative disorder NEDAMSS (Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech, and Seizures) have been associated with rare single-nucleotide polymorphisms (SNPs) or insertion and deletion variants (Indel) in the intron-less gene IRF2BPL. Up to now, 34 patients have been identified through whole exome sequencing carrying different heterozygous pathogenic variants spanning the intron-less gene from the first polyglutamine tract at the N-terminus to the C3HC4 RING domain of the C-terminus of the protein. As a result, the phenotypic spectrum of the patients is highly heterogeneous and ranges from abnormal neurocognitive development to severe neurodegenerative courses with developmental and seizure-related encephalopathies. While the treatment of IRF2BPL-related disorders has focused on alleviating the patient's symptoms by symptomatic multidisciplinary management, there has been no prospect of entirely relieving the symptoms of the individual patients. Yet, the recent advancement of CRISPR-Cas9-derived gene editing tools, leading to the generation of base editors (BEs) and prime editors (PEs), provide an encouraging new therapeutic avenue for treating NEDAMSS and other neurodevelopmental and neurodegenerative diseases, which contain SNPs or smaller Indels in post-mitotic cell populations of the central nervous system, due to its ability to generate site-specific DNA sequence modifications without creating double-stranded breaks, and recruiting the non-homologous DNA end joining repair mechanism.
RESUMEN
BACKGROUND: Pathogenic variants of the IRF2BPL gene have been reported to cause neurodevelopmental disorders; however, studies focused on IRF2BPL in zebrafish are limited. RESULTS: We reported three probands diagnosed with developmental delay and epilepsy and investigated the role of IRF2BPL in neurodevelopmental disorders in zebrafish. The clinical and genetic characteristics of three patients with neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures (NEDAMSS) were collected. Three de novo variants (NM_024496.4: c.1171 C > T, p.Arg391Cys; c.1157 C > T, p.Thr386Met; and c.273_307del, p.Ala92Thrfs*29) were detected and classified as pathogenic or likely pathogenic according to ACMG guidelines. Zebrafish crispants with disruption of the ortholog gene irf2bpl demonstrated a reduced body length and spontaneous ictal-like and interictal-like discharges in an electrophysiology study. After their spasms were controlled, they gain some development improvements. CONCLUSION: We contribute two new pathogenic variants for IRF2BPL related developmental epileptic disorder which provided evidences for genetic counseling. In zebrafish model, we for the first time confirm that disruption of irf2bpl could introduce spontaneous electrographic seizures which mimics key phenotypes in human patients. Our follow-up results suggest that timely cessation of spasmodic seizures can improve the patient's neurodevelopment.
Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Animales , Humanos , Pez Cebra/genética , Mutación , Epilepsia/genética , Epilepsia/diagnóstico , Convulsiones , Trastornos del Neurodesarrollo/genética , Proteínas Portadoras/genética , Proteínas Nucleares/genéticaRESUMEN
IRF2BPL gene variants have recently been associated to developmental disability and epilepsy in children and movement disorders in adults. So far, only few cases have been reported; here we present four novel cases identified by exome sequencing, while investigating developmental delay, adult-onset cerebellar ataxia or regression.
RESUMEN
IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.
Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Epilepsias Mioclónicas Progresivas , Mioclonía , Humanos , Niño , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas/patología , Familia , Proteínas Portadoras/genética , Proteínas Nucleares/genéticaRESUMEN
The progressive myoclonus epilepsies (PMEs) are a heterogeneous group of neurodegenerative disorders, typically presenting in late childhood. An etiologic diagnosis is achieved in about 80% of patients with PME, and genome-wide molecular studies on remaining, well-selected, undiagnosed cases can further dissect the underlying genetic heterogeneity. Through whole-exome sequencing (WES), we identified pathogenic truncating variants in the IRF2BPL gene in two, unrelated patients presenting with PME. IRF2BPL belongs to the transcriptional regulators family and it is expressed in multiple human tissues, including the brain. Recently missense and nonsense mutations in IRF2BPL were found in patients presenting with developmental delay and epileptic encephalopathy, ataxia, and movement disorders, but none with clear PME. We identified 13 other patients in the literature with myoclonic seizures and IRF2BPL variants. There was no clear genotype-phenotype correlation. With the description of these cases, the IRF2BPL gene should be considered in the list of genes to be tested in the presence of PME, in addition to patients with neurodevelopmental or movement disorders.
Asunto(s)
Epilepsias Mioclónicas , Trastornos del Movimiento , Epilepsias Mioclónicas Progresivas , Humanos , Niño , Epilepsias Mioclónicas Progresivas/genética , Convulsiones/genética , Genotipo , Proteínas Portadoras/genética , Proteínas Nucleares/genéticaRESUMEN
BACKGROUND: The carriers of damaging heterozygous variants in interferon regulatory factor 2 binding protein-like (IRF2BPL), encoding a member of the IRF2BP family of transcriptional regulators, may be affected by a variety of neurological symptoms, such as neurodevelopmental regression, language and motor developmental delay, seizures, progressive ataxia and a lack of coordination, and even dystonia. CASE PRESENTATION: We report a Chinese boy who presented with dystonia, dysarthria, and normal development due to nonsense IRF2BPL mutation, with intact imaging and EEG findings but without developmental delays or seizures. Whole-exome sequencing revealed a novel nonsense variant IRF2BPL (NM_024496) Exon C.562C > T (p.Arg188*). CONCLUSION: This case report presents a Chinese boy with a novel nonsense variant in IRF2BPL, displaying rapid progressive dystonia and dysarthria, without early developmental delay or epilepsy; expands the IRF2BPL phenotypes in the Chinese population; and raises awareness of patients with IRF2BPL.
Asunto(s)
Distonía , Trastornos Distónicos , Humanos , Proteínas Portadoras/genética , Disartria , Distonía/genética , Pueblos del Este de Asia , Lenguaje , Mutación , Proteínas Nucleares/genética , Convulsiones/genéticaRESUMEN
The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.
RESUMEN
BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.
Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Exoma , Genómica , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación del ExomaRESUMEN
BACKGROUND: IRF2BPL is an intronless gene that was mapped to 14q24.3 chromosome in 2000 and codes for the interferon regulatory factor 2 binding like protein. OBJECTIVE: To analyses the clinical characteristics of the patients reported in the literature and of an additional patient we observed in order to better delineate the phenomenological spectrum of the disease and provide indications to improve clinical recognition and facilitate diagnosis. METHODS: We reported on 28 patients carrying the IRF2BPL mutation who were identified in 10 papers (n.27), using PUBMED as the search engine, and in our hospital (n. 1). RESULTS: All patients shared developmental delay/regression. Additional neurological symptoms were present in a large proportion of patients and reflected the involvement of five main neurological domains, i.e. epilepsy, dystonia, ataxia, spasticity, and ocular disturbances. Correlation analysis suggested a significant positive correlation between the number of affected neurological domains and the presence of MRI abnormalities (rho = 0.45, p = 0.02), while no significant correlation emerged between the number of affected clinical domains and age at disease onset (rho = 0.18, p = 0.35) or variant type (rho = 0.30, p = 0.12). CONCLUSIONS: Our analysis highlights that the IRF2BPL mutation syndrome is highly specific to the central nervous system. Diagnostic work-up should consider the clinical picture of the IRF2BPL mutation syndrome herein delineated and the existence of conditions that share developmental delay/regression and result from acquired/genetic or unidentifiable underlying etiology.
Asunto(s)
Proteínas Portadoras , Trastornos Distónicos , Epilepsia , Proteínas Nucleares , Proteínas Portadoras/genética , Trastornos Distónicos/genética , Trastornos Distónicos/fisiopatología , Epilepsia/genética , Epilepsia/fisiopatología , Humanos , Mutación , Proteínas Nucleares/genética , SíndromeRESUMEN
The androgen receptor (AR) plays an essential role in the development of prostate cancer, and androgen-deprivation therapy is used as a first-line treatment for prostate cancer. However, under androgen-deprivation therapy, castration-resistant prostate cancer inevitably arises, suggesting that the interacting transcriptional coregulators of AR are promising targets for developing novel therapeutics. In this study, we used novel proteomic techniques to evaluate the AR interactome, including biochemically labile binding proteins, which might go undetected by conventional purification methods. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, we identified enhanced at puberty 1 (EAP1) as a novel AR coregulator, whereas its interaction with AR could not be detected under standard biochemical conditions. EAP1 enhanced the transcriptional activity of AR via the E3 ubiquitin ligase activity, and its ubiquitination substrate proteins included AR and HDAC1. Furthermore, in prostate cancer specimens, EAP1 expression was significantly correlated with AR expression as well as a poor prognosis of prostate cancer. Together, these results suggest that EAP1 is a novel AR coregulator that promotes AR activity and potentially plays a role in prostate cancer progression.
RESUMEN
BACKGROUND: Mutations in the IRF2BPL gene can cause neurodevelopmental disorders. We describe the clinical and genetic characteristics of a Chinese patient with a novel abnormality in this gene, explore the potential pathogenic mechanism and summarize the clinical characteristics of 25 patients with IRF2BPL mutations. METHODS: We identified the gene mutation sites by whole-exome and Sanger sequencing. The protein-protein interaction network of the IRF2BPL gene was constructed using bioinformatic techniques, and its function was enriched. We conducted a functional experiment to explore the potential pathogenicity of the identified IRF2BPL gene mutation. RESULTS: An 8-year-old girl presented with progressive cerebellar ataxia, including involuntary tremor and slurred speech. Electroencephalography and electromyography revealed no abnormalities. Structural cranial MRI was also normal, but genetic analysis identified a truncating de novo variant in IRF2BPL. Bioinformatics predicted that IRF2BPL would be associated with IRF2 and 10 other genes and involved in ubiquitin binding and other pathways. The cellular location of IRF2BPL was altered, and compared to control cells, the level of ubiquitinated proteins was significantly decreased in cells harbouring the mutation. CONCLUSION: In this study, we identified a truncating de novo variant of IRF2BPL as a causative gene in the neurodevelopmental disorder of a Chinese girl. Impairment of the ubiquitin-proteasome pathway caused by this IRF2BPL mutation may play an important role in this neurodevelopmental disorder.
Asunto(s)
Trastornos del Neurodesarrollo , Proteínas Portadoras/genética , Niño , Electroencefalografía , Femenino , Humanos , Mutación/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Secuenciación del ExomaRESUMEN
De novo mutations in the IRF2BPL gene have been identified to date in 18 patients presenting with neuromotor regression, epilepsy and variable neurological signs. Here, we report a female child carrying a novel heterozygous truncating variant in IRF2BPL. Following normal development for two and half years, she developed a progressive neurological condition with psychomotor regression, dystonic tetraparesis with hyperkinetic movements, but no overt epilepsy. Skin biopsy revealed enlarged lysosomes containing granular and tubular material, suggestive of a lysosomal storage disorder. This case expands the IRF2BPL phenotypic spectrum, for the first time providing evidence of endolysosomal storage.
Asunto(s)
Proteínas Portadoras/genética , Enfermedades por Almacenamiento Lisosomal , Lisosomas/patología , Proteínas Nucleares/genética , Niño , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Humanos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Mutación/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Fenotipo , Piel/citología , Piel/patologíaAsunto(s)
Afonía/etiología , Proteínas Portadoras/genética , Disartria/etiología , Trastornos Distónicos/complicaciones , Trastornos Distónicos/genética , Proteínas Nucleares/genética , Trastornos de la Motilidad Ocular/etiología , Movimientos Sacádicos , Convulsiones/etiología , Adulto , Femenino , Humanos , Masculino , LinajeRESUMEN
Heterozygous loss of function variants in the IRF2BPL are a newly described cause of neurodevelopmental disabilities and epilepsy. As of 2019, fewer than 20 patients have been described in the published literature. This article reports an additional case of a patient with a pathogenic IRF2BPL variant and offers a comprehensive review of the published cases of individuals with IRF2BPL variants, in order to help expand the phenotype. The patient has a history of infantile spasms evolving into drug-resistant epilepsy with underlying epileptic encephalopathy consistent with Lennox-Gastaut syndrome. While at the extreme end of the spectrum, his phenotype is consistent with those previously described. Our literature review highlights the wide range of phenotypes exhibited by those with diseases related to IRF2BPL gene variants. This article also briefly discusses other comorbidities seen in the patient and those previously reported. While the molecular underpinnings of the role of IRF2BPL gene in the central nervous system are newly established, the specifics of its effects elsewhere have yet to be delineated. Furthermore, its pathogenesis in other organ systems is not yet understood and could be of importance from a management perspective.
Asunto(s)
Proteínas Portadoras/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Fenotipo , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , MasculinoRESUMEN
PURPOSE: Developmental and epileptic encephalopathies (DEEs) are severe clinical conditions characterized by stagnation or decline of cognitive and behavioral abilities preceded, accompanied or followed by seizures. Because DEEs are clinically and genetically heterogeneous, next-generation sequencing, especially exome sequencing (ES), is becoming a first-tier strategy to identify the molecular etiologies of these disorders. METHODS: We combined ES analysis and international data sharing. RESULTS: We identified 11 unrelated individuals with DEE and de novo heterozygous truncating variants in the interferon regulatory factor 2-binding protein-like gene (IRF2BPL). The 11 individuals allowed for delineation of a consistent neurodevelopmental disorder characterized by mostly normal initial psychomotor development followed by severe global neurological regression and epilepsy with nonspecific electroencephalogram (EEG) abnormalities and variable central nervous system (CNS) anomalies. IRF2BPL, also known as enhanced at puberty protein 1 (EAP1), encodes a transcriptional regulator containing a C-terminal RING-finger domain common to E3 ubiquitin ligases. This domain is required for its repressive and transactivating transcriptional properties. The variants identified are expected to encode a protein lacking the C-terminal RING-finger domain. CONCLUSIONS: These data support the causative role of truncating IRF2BPL variants in pediatric neurodegeneration and expand the spectrum of transcriptional regulators identified as molecular factors implicated in genetic developmental and epileptic encephalopathies.