Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1172758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324663

RESUMEN

Plant genetic transformation is a powerful tool that can facilitate breeding programs for disease tolerance, abiotic stress, fruit production, and quality by preserving the characteristics of fruit tree elite genotypes. However, most grapevine cultivars worldwide are considered recalcitrant, and most available genetic transformation protocols involve regeneration by somatic embryogenesis, which often requires the continuous production of new embryogenic calli. Cotyledons and hypocotyls derived from flower-induced somatic embryos of the Vitis vinifera cultivars Ancellotta and Lambrusco Salamino, in comparison with the model cultivar Thompson Seedless, are here validated for the first time as starting explants for in vitro regeneration and transformation trials. Explants were cultured on two different MS-based culture media, one having a combination of 4.4 µM BAP and 0.49 µM IBA (M1), and the other only supplemented with 13.2 µM BAP (M2). The competence to regenerate adventitious shoots was higher in cotyledons than in hypocotyls on both M1 and M2. M2 medium increased significantly the average number of shoots only in Thompson Seedless somatic embryo-derived explants. This efficient regeneration strategy, that proposes a combination of somatic embryogenesis and organogenesis, has been successfully exploited in genetic engineering experiments. Ancellotta and Lambrusco Salamino cotyledons and hypocotyls produced the highest number of calli expressing eGFP when cultured on M2 medium, while for Thompson Seedless both media tested were highly efficient. The regeneration of independent transgenic lines of Thompson Seedless was observed from cotyledons cultured on both M1 and M2 with a transformation efficiency of 12 and 14%, respectively, and from hypocotyls on M1 and M2 with a transformation efficiency of 6 and 12%, respectively. A single eGFP fluorescent adventitious shoot derived from cotyledons cultured on M2 was obtained for Ancellotta, while Lambrusco Salamino showed no regeneration of transformed shoots. In a second set of experiments, using Thompson Seedless as the model cultivar, we observed that the highest number of transformed shoots was obtained from cotyledons explants, followed by hypocotyls and meristematic bulk slices, confirming the high regeneration/transformation competences of somatic embryo-derived cotyledons. The independent transformed shoots obtained from the cultivars Thompson Seedless and Ancellotta were successfully acclimatized in the greenhouse and showed a true-to-type phenotype. The novel in vitro regeneration and genetic transformation protocols optimized in this study will be useful for the application of new and emerging modern biotechnologies also to other recalcitrant grapevine genotypes.

2.
Plants (Basel) ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616309

RESUMEN

Origanum dictamnus L. is a medicinal local endemic to the Island of Crete, Greece. Its propagation through biotechnological tissue culture techniques is essential due to its augmented multi-industrial sector demand. For direct organogenesis, among different culture media variants (MS, Gamborg B5), and cytokinins [6-benzyladenine (BA), kinetin (Kin), 2-isopentenyl adenine (2-iP)], the MS + added with BA (2.2 µM) was the most effective treatment for shoots and roots formation. For indirect organogenesis, all explant types (leaves, petioles, roots) showed a 100% callusing rate after 2 months in all media variants tested; ODK1: 20 µM thidiazuron (TDZ) + 5 µM indole-3-butyric acid (IBA) or ODK2: 0.5 µM kinetin + 5 µM 2,4-dichlorophenoxy acetic acid (2,4-D). The leaves and petiole explants assured a low rate of shoot regeneration (20%) in ODK1. Afterwards, leaf-, petiole-and root-callus derived from both media were transferred to four new media plant growth regulators-free or with BA + IBA + gibberellic acid (GA3). After 10 months from callus transferring, the petiole callus gave rise to roots (20-75%) while the leaf callus exhibited 10-30% shoot or 30% root regeneration. In this study, indirect organogenesis of O. dictamnus was carried out for the first time, thus various organs can be used for plant regeneration, and the developed protocol may be applicable in the horticulture industry.

3.
Heliyon ; 8(12): e11969, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36544836

RESUMEN

This study was conducted to determine if artificial neural networks (ANN) can be used to accurately predict in vitro organogenesis of Bacopa monnieri compared with statistical regression. Prediction models were developed for shoot and root organogenesis (outputs) on two culture media (Murashige and Skoog and Gamborg B5) affected by two explant types (leaf and node) and two cytokinins (6-Benzylaminopurine and Thidiazuron at 1.0, 5.0, and 10.0 µM levels) with and without the addition of auxin (1-Naphthaleneacetic acid 0.1 µM) (inputs). Categorical data were encoded in numeric form using one-hot encoding technique. Backpropagation (BP) and Kalman filter (KF) learning algorithms were used to develop nonparametric models between inputs and outputs. Correlations between predicted and observed outputs (validation dataset) were similar in both ANN-BP (R values = 0.77, 0.71, 0.68, and 0.48), and ANN-KF (R values = 0.79, 0.68, 0.75, and 0.49), and were higher than regression (R values = 0.13, 0.48, 0.39, and 0.37) models for shoots and roots from leaf and node explants, respectively. Because ANN models have the ability to interpolate from unseen data, they could be used as an effective tool in accurately predicting the in vitro growth kinetics of Bacopa cultures.

4.
Biomaterials ; 287: 121674, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835003

RESUMEN

Scaffold-free in vitro organogenesis exploits the innate ability of cells to synthesise and deposit their own extracellular matrix to fabricate tissue-like assemblies. Unfortunately, cell-assembled tissue engineered concepts require prolonged ex vivo culture periods of very high cell numbers for the development of a borderline three-dimensional implantable device, which are associated with phenotypic drift and high manufacturing costs, thus, hindering their clinical translation and commercialisation. Herein, we report the accelerated (10 days) development of a truly three-dimensional (338.1 ± 42.9 µm) scaffold-free tissue equivalent that promotes fast wound healing and induces formation of neotissue composed of mature collagen fibres, using human adipose derived stem cells seeded at only 50,000 cells/cm2 on an poly (N-isopropylacrylamide-co-N-tert-butylacrylamide (PNIPAM86-NTBA14) temperature-responsive electrospun scaffold and grown under macromolecular crowding conditions (50 µg/ml carrageenan). Our data pave the path for a new era in scaffold-free regenerative medicine.

5.
Plants (Basel) ; 10(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685890

RESUMEN

The development of a protocol for the large-scale production of Cannabis and its variants with little to no somaclonal variation or disease for pharmaceutical and for other industrial use has been an emerging area of research. A limited number of protocols have been developed around the world, obtained through a detailed literature search using web-based database searches, e.g., Scopus, Web of Science (WoS) and Google Scholar. This article reviews the advances made in relation to Cannabis tissue culture and micropropagation, such as explant choice and decontamination of explants, direct and indirect organogenesis, rooting, acclimatisation and a few aspects of genetic engineering. Since Cannabis micropropagation systems are fairly new fields, combinations of plant growth regulator experiments are needed to gain insight into the development of direct and indirect organogenesis protocols that are able to undergo the acclimation stage and maintain healthy plants desirable to the Cannabis industry. A post-culture analysis of Cannabis phytochemistry after the acclimatisation stage is lacking in a majority of the reviewed studies, and for in vitro propagation protocols to be accepted by the pharmaceutical industries, phytochemical and possibly pharmacological research need to be undertaken in order to ascertain the integrity of the generated plant material. It is rather difficult to obtain industrially acceptable micropropagation regimes as recalcitrance to the regeneration of in vitro cultured plants remains a major concern and this impedes progress in the application of genetic modification technologies and gene editing tools to be used routinely for the improvement of Cannabis genotypes that are used in various industries globally. In the future, with more reliable plant tissue culture-based propagation that generates true-to-type plants that have known genetic and metabolomic integrity, the use of genetic engineering systems including "omics" technologies such as next-generation sequencing and fast-evolving gene editing tools could be implemented to speed up the identification of novel genes and mechanisms involved in the biosynthesis of Cannabis phytochemicals for large-scale production.

6.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252023

RESUMEN

Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Organogénesis , Organoides/citología , Retina/citología , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Humanos , Morfogénesis , Organoides/metabolismo , Oryzias , Células Madre Pluripotentes/fisiología , Retina/crecimiento & desarrollo , Retina/metabolismo , Pez Cebra
7.
J Plant Physiol ; 260: 153405, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743435

RESUMEN

In vitro organogenesis is a multistep process which is largely controlled by the balance between auxin and cytokinin. Previous studies revealed a complex network regulating in vitro organogenesis in Arabidopsis thaliana; however, our knowledge of the molecular mechanisms underlying de novo shoot formation in papaya (Carica papaya) remains limited. Here, we optimized multiple factors to achieve an efficient and reproducible protocol for the induction of papaya callus formation and shoot regeneration. Subsequently, we analyzed the dynamic transcriptome profiles of samples undergoing this process, identified 5381, 642, 4047, and 2386 differentially expressed genes (DEGs), including 447, 66, 350, and 263 encoding transcription factors (TFs), in four stage comparisons. The DEGs were mainly involved in phytohormone modulation and transduction processes, particularly for auxin and cytokinin. Of these, 21 and 7 candidate genes involved in the auxin and cytokinin pathways, respectively, had distinct expression patterns throughout in vitro organogenesis. Furthermore, we found two genes encoding key TFs, CpLBD19 and CpESR1, were sharply induced on callus induction medium and shoot induction medium, indicating these two TFs may serve as proxies for callus induction and shoot formation in papaya. We therefore report a regulatory network of auxin and cytokinin signaling in papaya according to the one previously modeled for Arabidopsis. Our comprehensive analyses provide insight into the early molecular regulation of callus initiation and shoot formation in papaya, and are useful for the further identification of the regulators governing in vitro organogenesis.


Asunto(s)
Carica/fisiología , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/fisiología , Regeneración , Estrés Fisiológico
8.
Cell Stem Cell ; 28(2): 230-240.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33176168

RESUMEN

Organoids are powerful models for studying tissue development, physiology, and disease. However, current culture systems disrupt the inductive tissue-tissue interactions needed for the complex morphogenetic processes of native organogenesis. Here, we show that mouse embryonic stem cells (mESCs) can be coaxed to robustly undergo fundamental steps of early heart organogenesis with an in-vivo-like spatiotemporal fidelity. These axially patterned embryonic organoids (gastruloids) mimic embryonic development and support the generation of cardiovascular progenitors, including first and second heart fields. The cardiac progenitors self-organize into an anterior domain reminiscent of a cardiac crescent before forming a beating cardiac tissue near a putative primitive gut-like tube, from which it is separated by an endocardial-like layer. These findings unveil the surprising morphogenetic potential of mESCs to execute key aspects of organogenesis through the coordinated development of multiple tissues. This platform could be an excellent tool for studying heart development in unprecedented detail and throughput.


Asunto(s)
Organogénesis , Organoides , Animales , Desarrollo Embrionario , Corazón , Ratones , Células Madre Embrionarias de Ratones
9.
Plants (Basel) ; 9(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560119

RESUMEN

In the present study, an efficient system for the in vitro regeneration of adventitious shoots from the peach rootstock Hansen 536 leaves has been established. Twenty regeneration media containing McCown Woody Plant Medium (WPM) as a basal salt supplemented with different concentrations and combinations of plant growth regulators (PGRs) were tested. Expanded leaves along with their petiole from 3-week-old elongated in vitro shoot cultures were used as starting explants. The highest regeneration rate (up to 53%) was obtained on WPM basal medium enriched with 15.5 µM N6-benzylaminopurine (BAP). The influences on leaf regeneration of the ethylene inhibitor silver thiosulphate (STS) and of different combinations of antibiotics added to the optimized regeneration medium were also investigated. The use of 10 µM STS or carbenicillin (238 µM) combined with cefotaxime (210 µM) significantly increased the average number of regenerating shoots per leaf compared to the control. In vitro shoots were finally elongated, rooted and successfully acclimatized in the greenhouse. The results achieved in this study advances the knowledge on factors affecting leaf organogenesis in Prunus spp., and the regeneration protocol described looks promising for the optimization of new genetic transformation procedures in Hansen 536 and other peach rootstocks and cultivars.

10.
Sheng Wu Gong Cheng Xue Bao ; 34(11): 1831-1839, 2018 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-30499278

RESUMEN

Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation Epigenetic modification, especially histone modification, plays an important role in maintaining plant genome stability, regulating gene expression and promoting regeneration in vitro. MtSERK1 is an important marker gene involved in establishing of embryogenic callus during in vitro regeneration of Medicago truncatula. In order to understand the regulation relationship between dynamic histone modification and MtSERK1s expression during the processes of in vitro organogenesis, the expression of MtSERK1 was analyzed by qRT-PCR, and the modification status of H3K9me2, H3K4me3 and H3K9ac in the promoter region and different regions included in the gene body was analyzed by chromatin immunoprecipitation (ChIP). We found expression activation of MtSERK1 was related to the dynamic changes of histone H3K4me3 and H3K9ac in the 5' and 3' regions. This study will provide important theoretical guidance for understanding of the regulatory mechanism of MtSERK1 and also for establishing efficient genetic transformation system of Medicago truncatula.


Asunto(s)
Código de Histonas , Medicago truncatula/genética , Proteínas Quinasas/genética , Regeneración , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Medicago truncatula/crecimiento & desarrollo
11.
J Tissue Eng Regen Med ; 12(1): 6-18, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27592127

RESUMEN

Development of implantable devices based on the principles of in vitro organogenesis has been hindered due to the prolonged time required to develop an implantable device. Herein we assessed the influence of serum concentration (0.5% and 10%), oxygen tension (0.5%, 2% and 20%) and macromolecular crowding (75 µg/ml carrageenan) in extracellular matrix deposition in human corneal fibroblast culture (3, 7 and 14 days). The highest extracellular matrix deposition was observed after 14 days in culture at 0.5% serum, 2% oxygen tension and 75 µg/ml carrageenan. These data indicate that low oxygen tension coupled with macromolecular crowding significantly accelerate the development of scaffold-free tissue-like modules. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Córnea/citología , Matriz Extracelular/metabolismo , Fibroblastos/citología , Sustancias Macromoleculares/química , Oxígeno/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo
12.
Stem Cell Reports ; 10(1): 300-313, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29233554

RESUMEN

Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Retina/metabolismo , Animales , Ratones , Ratones Transgénicos , Organoides/citología , Células Madre Pluripotentes/citología , Retina/citología
13.
Biochem Eng J ; 117(Pt B): 73-81, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28111521

RESUMEN

Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA® temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min-1 was identified, corresponding to a shear rate of 96.7 s-1, pneumatic power input of 8.8 mW kg-1 and initial 20-day pneumatic energy dissipation of 127 J kg-1, at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

14.
Acta Biomater ; 44: 221-31, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27506127

RESUMEN

UNLABELLED: A key challenge of in vitro organogenesis is the development in timely manner tissue equivalents. Herein, we assessed the simultaneous effect of oxygen tension (0.5%, 2% and 20%), foetal bovine serum concentration (0.5% and 10%) and macromolecular crowding (75µg/ml carrageenan) in human dermal fibroblast culture. Our data demonstrate that cells cultured at 2% oxygen tension, in the presence of carrageenan and at 0.5% serum concentration deposited within 3days in culture more extracellular matrix than cells grown for 14days, at 20% oxygen tension, 10% serum concentration and in the absence of carrageenan. These data suggest that optimal oxygen tension coupled with macromolecular crowding are important in vitro microenvironment modulators for accelerated development of tissue-like modules in vitro. STATEMENT OF SIGNIFICANCE: To enable clinical translation and commercialisation of in vitro organogenesis therapies, we cultured human dermal fibroblast at 2% oxygen tension, under macromolecular crowding conditions (75µg/ml carrageenan) and at low foetal bovine serum concentration (0.5%). Within 3days in culture, more extracellular matrix was deposited under these conditions than cells grown for 14days, at 20% oxygen tension, 10% FBS concentration and in the absence of crowding agents. These data bring us closer to the development of more clinically relevant tissue-like modules.


Asunto(s)
Dermis/citología , Matriz Extracelular/metabolismo , Fibroblastos/citología , Sustancias Macromoleculares/metabolismo , Oxígeno/farmacología , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Densitometría , Electroforesis en Gel de Poliacrilamida , Matriz Extracelular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Metaloproteinasas de la Matriz/metabolismo
15.
Anc Sci Life ; 26(4): 18-23, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22557245

RESUMEN

Lycianthes bigeminata Bitter (Solanaceae) is an important medicinal herb distributed in the sholas of Nilgiris and chiefly used for curing ulcer. It is reported that the species is present in the sholas with poor population size in comparison to other constituent species. Owing to the demand and subsequent exploitation, it is predicted that it may occupy still poor association in the sholas of Nilgiris in course of time. Hence in vitro regeneration through employing tissue culture technique is needed. The preliminary attempt in the present study reports that the MS medium supplemented with Benzyl Amino Purine (BAP) and Naphthalene Amino Acid (NAA) at 0.5 mg/l each, induced effective callus formation. However further studies on hardening is suggested to know the survivability of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...