Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(34): 23489-23496, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137093

RESUMEN

Ternary content-addressable memory (TCAM) is promising for data-intensive artificial intelligence applications due to its large-scale parallel in-memory computing capabilities. However, it is still challenging to build a reliable TCAM cell from a single circuit component. Here, we demonstrate a single transistor TCAM based on a floating-gate two-dimensional (2D) ambipolar MoTe2 field-effect transistor with graphene contacts. Our bottom graphene contacts scheme enables gate modulation of the contact Schottky barrier heights, facilitating carrier injection for both electrons and holes. The 2D nature of our channel and contact materials provides device scaling potentials beyond silicon. By integration with a floating-gate stack, a highly reliable nonvolatile memory is achieved. Our TCAM cell exhibits a resistance ratio larger than 1000 and symmetrical complementary states, allowing the implementation of large-scale TCAM arrays. Finally, we show through circuit simulations that in-memory Hamming distance computation is readily achievable based on our TCAM with array sizes up to 128 cells.

2.
Adv Mater ; : e2406984, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039978

RESUMEN

The photovoltaic effect is gaining growing attention in the optoelectronics field due to its low power consumption, sustainable nature, and high efficiency. However, the photovoltaic effects hitherto reported are hindered by the stringent band-alignment requirement or inversion symmetry-breaking, and are challenging for achieving multifunctional photovoltaic properties (such as reconfiguration, nonvolatility, and so on). Here, a novel ionic photovoltaic effect in centrosymmetric CdSb2Se3Br2 that can overcome these limitations is demonstrated. The photovoltaic effect displays significant anisotropy, with the photocurrent being most apparent along the CdBr2 chains while absent perpendicular to them. Additionally, the device shows electrically-induced nonvolatile photocurrent switching characteristics. The photovoltaic effect is attributed to the modulation of the built-in electric field through the migration of Br ions. Using these unique photovoltaic properties, a highly secure circuit with electrical and optical keys is successfully implemented. The findings not only broaden the understanding of the photovoltaic mechanism, but also provide a new material platform for the development of in-memory sensing and computing devices.

3.
Nanotechnology ; 35(41)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38991518

RESUMEN

Physical implementations of reservoir computing (RC) based on the emerging memristors have become promising candidates of unconventional computing paradigms. Traditionally, sequential approaches by time-multiplexing volatile memristors have been prevalent because of their low hardware overhead. However, they suffer from the problem of speed degradation and fall short of capturing the spatial relationship between the time-domain inputs. Here, we explore a new avenue for RC using memristor crossbar arrays with device-to-device variations, which serve as physical random weight matrices of the reservoir layers, enabling faster computation thanks to the parallelism of matrix-vector multiplication as an intensive operation in RC. To achieve this new RC architecture, ultralow-current, self-selective memristors are fabricated and integrated without the need of transistors, showing greater potential of high scalability and three-dimensional integrability compared to the previous realizations. The information processing ability of our RC system is demonstrated in asks of recognizing digit images and waveforms. This work indicates that the 'nonidealities' of the emerging memristor devices and circuits are a useful source of inspiration for new computing paradigms.

4.
Nano Lett ; 24(26): 7843-7851, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912682

RESUMEN

Two-dimensional-material-based memristors are emerging as promising enablers of new computing systems beyond von Neumann computers. However, the most studied anion-vacancy-enabled transition metal dichalcogenide memristors show many undesirable performances, e.g., high leakage currents, limited memory windows, high programming currents, and limited endurance. Here, we demonstrate that the emergent van der Waals metal phosphorus trisulfides with unconventional nondefective vacancy provide a promising paradigm for high-performance memristors. The different vacancy types (i.e., defective and nondefective vacancies) induced memristive discrepancies are uncovered. The nondefective vacancies can provide an ultralow diffusion barrier and good memristive structure stability giving rise to many desirable memristive performances, including high off-state resistance of 1012 Ω, pA-level programming currents, large memory window up to 109, more than 7-bit conductance states, and good endurance. Furthermore, a high-yield (94%) memristor crossbar array is fabricated and implements multiple image processing successfully, manifesting the potential for in-memory computing hardware.

5.
Nanomicro Lett ; 16(1): 227, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918252

RESUMEN

Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.

6.
Adv Mater ; : e2400332, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739927

RESUMEN

The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.

7.
Micromachines (Basel) ; 15(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38793189

RESUMEN

This article proposes a novel design for an in-memory computing SRAM, the DAM SRAM CORE, which integrates storage and computational functionality within a unified 11T SRAM cell and enables the performance of large-scale parallel Multiply-Accumulate (MAC) operations within the SRAM array. This design not only improves the area efficiency of the individual cells but also realizes a compact layout. A key highlight of this design is its employment of a dynamic aXNOR-based computation mode, which significantly reduces the consumption of both dynamic and static power during the computational process within the array. Additionally, the design innovatively incorporates a self-stabilizing voltage gradient quantization circuit, which enhances the computational accuracy of the overall system. The 64 × 64 bit DAM SRAM CORE in-memory computing core was fabricated using the 55 nm CMOS logic process and validated via simulations. The experimental results show that this core can deliver 5-bit output results with 1-bit input feature data and 1-bit weight data, while maintaining a static power consumption of 0.48 mW/mm2 and a computational power consumption of 11.367 mW/mm2. This showcases its excellent low-power characteristics. Furthermore, the core achieves a data throughput of 109.75 GOPS and exhibits an impressive energy efficiency of 21.95 TOPS/W, which robustly validate the effectiveness and advanced nature of the proposed in-memory computing core design.

8.
Front Neurosci ; 18: 1279708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660225

RESUMEN

A neuromorphic system is composed of hardware-based artificial neurons and synaptic devices, designed to improve the efficiency of neural computations inspired by energy-efficient and parallel operations of the biological nervous system. A synaptic device-based array can compute vector-matrix multiplication (VMM) with given input voltage signals, as a non-volatile memory device stores the weight information of the neural network in the form of conductance or capacitance. However, unlike software-based neural networks, the neuromorphic system unavoidably exhibits non-ideal characteristics that can have an adverse impact on overall system performance. In this study, the characteristics required for synaptic devices and their importance are discussed, depending on the targeted application. We categorize synaptic devices into two types: conductance-based and capacitance-based, and thoroughly explore the operations and characteristics of each device. The array structure according to the device structure and the VMM operation mechanism of each structure are analyzed, including recent advances in array-level implementation of synaptic devices. Furthermore, we reviewed studies to minimize the effect of hardware non-idealities, which degrades the performance of hardware neural networks. These studies introduce techniques in hardware and signal engineering, as well as software-hardware co-optimization, to address these non-idealities through compensation approaches.

9.
ACS Nano ; 18(16): 10758-10767, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598699

RESUMEN

Neural networks are increasingly used to solve optimization problems in various fields, including operations research, design automation, and gene sequencing. However, these networks face challenges due to the nondeterministic polynomial time (NP)-hard issue, which results in exponentially increasing computational complexity as the problem size grows. Conventional digital hardware struggles with the von Neumann bottleneck, the slowdown of Moore's law, and the complexity arising from heterogeneous system design. Two-dimensional (2D) memristors offer a potential solution to these hardware challenges, with their in-memory computing, decent scalability, and rich dynamic behaviors. In this study, we explore the use of nonvolatile 2D memristors to emulate synapses in a discrete-time Hopfield neural network, enabling the network to solve continuous optimization problems, like finding the minimum value of a quadratic polynomial, and tackle combinatorial optimization problems like Max-Cut. Additionally, we coupled volatile memristor-based oscillators with nonvolatile memristor synapses to create an oscillatory neural network-based Ising machine, a continuous-time analog dynamic system capable of solving combinatorial optimization problems including Max-Cut and map coloring through phase synchronization. Our findings demonstrate that 2D memristors have the potential to significantly enhance the efficiency, compactness, and homogeneity of integrated Ising machines, which is useful for future advances in neural networks for optimization problems.

10.
Adv Sci (Weinh) ; 11(22): e2309538, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491732

RESUMEN

Memristors offer a promising solution to address the performance and energy challenges faced by conventional von Neumann computer systems. Yet, stochastic ion migration in conductive filament often leads to an undesired performance tradeoff between memory window, retention, and endurance. Herein, a robust memristor based on oxygen-rich SnO2 nanoflowers switching medium, enabled by seed-mediated wet chemistry, to overcome the ion migration issue for enhanced analog in-memory computing is reported. Notably, the interplay between the oxygen vacancy (Vo) and Ag ions (Ag+) in the Ag/SnO2/p++-Si memristor can efficiently modulate the formation and abruption of conductive filaments, thereby resulting in a high on/off ratio (>106), long memory retention (10-year extrapolation), and low switching variability (SV = 6.85%). Multiple synaptic functions, such as paired-pulse facilitation, long-term potentiation/depression, and spike-time dependent plasticity, are demonstrated. Finally, facilitated by the symmetric analog weight updating and multiple conductance states, a high image recognition accuracy of ≥ 91.39% is achieved, substantiating its feasibility for analog in-memory computing. This study highlights the significance of synergistically modulating conductive filaments in optimizing performance trade-offs, balancing memory window, retention, and endurance, which demonstrates techniques for regulating ion migration, rendering them a promising approach for enabling cutting-edge neuromorphic applications.

11.
Nano Converg ; 11(1): 9, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416323

RESUMEN

Artificial neural networks (ANNs), inspired by the human brain's network of neurons and synapses, enable computing machines and systems to execute cognitive tasks, thus embodying artificial intelligence (AI). Since the performance of ANNs generally improves with the expansion of the network size, and also most of the computation time is spent for matrix operations, AI computation have been performed not only using the general-purpose central processing unit (CPU) but also architectures that facilitate parallel computation, such as graphic processing units (GPUs) and custom-designed application-specific integrated circuits (ASICs). Nevertheless, the substantial energy consumption stemming from frequent data transfers between processing units and memory has remained a persistent challenge. In response, a novel approach has emerged: an in-memory computing architecture harnessing analog memory elements. This innovation promises a notable advancement in energy efficiency. The core of this analog AI hardware accelerator lies in expansive arrays of non-volatile memory devices, known as resistive processing units (RPUs). These RPUs facilitate massively parallel matrix operations, leading to significant enhancements in both performance and energy efficiency. Electrochemical random-access memory (ECRAM), leveraging ion dynamics in secondary-ion battery materials, has emerged as a promising candidate for RPUs. ECRAM achieves over 1000 memory states through precise ion movement control, prompting early-stage research into material stacks such as mobile ion species and electrolyte materials. Crucially, the analog states in ECRAMs update symmetrically with pulse number (or voltage polarity), contributing to high network performance. Recent strides in device engineering in planar and three-dimensional structures and the understanding of ECRAM operation physics have marked significant progress in a short research period. This paper aims to review ECRAM material advancements through literature surveys, offering a systematic discussion on engineering assessments for ion control and a physical understanding of array-level demonstrations. Finally, the review outlines future directions for improvements, co-optimization, and multidisciplinary collaboration in circuits, algorithms, and applications to develop energy-efficient, next-generation AI hardware systems.

12.
Nanomicro Lett ; 16(1): 121, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372805

RESUMEN

The conventional computing architecture faces substantial challenges, including high latency and energy consumption between memory and processing units. In response, in-memory computing has emerged as a promising alternative architecture, enabling computing operations within memory arrays to overcome these limitations. Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays, rapid response times, and ability to emulate biological synapses. Among these devices, two-dimensional (2D) material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing, thanks to their exceptional performance driven by the unique properties of 2D materials, such as layered structures, mechanical flexibility, and the capability to form heterojunctions. This review delves into the state-of-the-art research on 2D material-based memristive arrays, encompassing critical aspects such as material selection, device performance metrics, array structures, and potential applications. Furthermore, it provides a comprehensive overview of the current challenges and limitations associated with these arrays, along with potential solutions. The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing, leveraging the potential of 2D material-based memristive devices.

13.
ACS Nano ; 18(4): 2763-2771, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38232763

RESUMEN

As a promising alternative to the von Neumann architecture, in-memory computing holds the promise of delivering a high computing capacity while consuming low power. In this paper, we show that the ferroelectric reconfigurable transistor can serve as a versatile logic-in-memory unit that can perform logic operations and data storage concurrently. When functioning as memory, a ferroelectric reconfigurable transistor can implement content-addressable memory (CAM) with a 1-transistor-per-bit density. With the switchable polarity of the ferroelectric reconfigurable transistor, XOR/XNOR-like matching operation in CAM is realized in a single transistor, which can offer a significant improvement in area and energy efficiency compared to conventional CAMs. NAND- and NOR-arrays of CAMs are also demonstrated, which enable multibit matching in a single reading operation. In addition, the NOR array of CAM cells effectively measures the Hamming distance between the input query and the stored entries. When functioning as a logic element, a ferroelectric reconfigurable transistor can be switched between n- and p-type modes. Utilizing the switchable polarity of these ferroelectric Schottky barrier transistors, we demonstrate reconfigurable logic gates with NAND/NOR dual functions, whose input-output mapping can be transformed in real time without changing the layout, and the configuration is nonvolatile.

14.
Adv Mater ; 36(4): e2307218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972344

RESUMEN

Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration. As a perfect solution to the sneak-path issue, a self-rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102  Mbit). Moreover, SRM-configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.

15.
Exploration (Beijing) ; 3(3): 20220126, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933380

RESUMEN

Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption. The as-designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3-bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 104 s and well endurance of 109 cycles. In a wired memcapacitor crossbar network hardware, analog vector-matrix multiplication is successfully implemented to classify 9-pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow-power neural hardware based on ferroelectric memcapacitors.

16.
Adv Mater ; 35(46): e2305465, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37747134

RESUMEN

The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor-based compute-in-memory (CIM) modules can perform vector-matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM-based model training faces challenges due to non-linear weight updates, device variations, and low-precision. In this work, a mixed-precision training scheme is experimentally implemented to mitigate these effects using a bulk-switching memristor-based CIM module. Low-precision CIM modules are used to accelerate the expensive VMM operations, with high-precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre-defined threshold. The proposed scheme is implemented with a system-onchip of fully integrated analog CIM modules and digital sub-systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix-precision DNN training with accuracy comparable to full-precision software-trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re-training.

17.
Adv Sci (Weinh) ; 10(29): e2303018, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37559176

RESUMEN

Analog in-memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on-chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si-CMOS leakage currents, resulting in a deterioration of training accuracy. Here, a novel 6T1C synaptic device using only n-type indium gaIlium zinc oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor is proposed, allowing not only linear and symmetric weight update but also sufficient retention time and parallel on-chip training operations. In addition, an efficient and realistic training algorithm to compensate for any remaining device non-idealities such as drifting references and long-term retention loss is proposed, demonstrating the importance of device-algorithm co-optimization.

18.
Neural Netw ; 165: 1050-1057, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37478527

RESUMEN

In-memory computing techniques are used to accelerate artificial neural network (ANN) training and inference tasks. Memory technology and architectural innovations allow efficient matrix-vector multiplications, gradient calculations, and updates to network weights. However, on-chip learning for edge devices is quite challenging due to the frequent updates. Here, we propose using an analog and temporary on-chip memory (ATOM) cell with controllable retention timescales for implementing the weights of an on-chip training task. Measurement results for Read-Write timescales are presented for an ATOM cell fabricated in GlobalFoundries' 45 nm RFSOI technology. The effect of limited retention and its variability is evaluated for training a fully connected neural network with a variable number of layers for the MNIST hand-written digit recognition task. Our studies show that weight decay due to temporary memory can have benefits equivalent to regularization, achieving a ∼33% reduction in the validation error (from 3.6% to 2.4%). We also show that the controllability of the decay timescale can be advantageous in achieving a further ∼26% reduction in the validation error. This strongly suggests the utility of temporary memory during learning before on-chip non-volatile memories can take over for the storage and inference tasks using the neural network weights. We thus propose an algorithm-circuit codesign in the form of temporary analog memory for high-performing on-chip learning of ANNs.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Aprendizaje , Reconocimiento en Psicología , Cognición
19.
Adv Mater ; : e2301472, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37363893

RESUMEN

In recent years, an increasing number of 2D van der Waals (vdW) materials are theory-predicted or laboratory-validated to possess in-plane (IP) and/or out-of-plane (OOP) spontaneous ferroelectric polarization. Due to their dangling-bond-free surfaces, interlayer charge coupling, robust polarization, tunable energy band structures, and compatibility with silicon-based technologies, vdW ferroelectric materials exhibit great promise in ferroelectric memories, neuromorphic computing, nanogenerators, photovoltaic devices, spintronic devices, and so on. Here, the very recent advances in the field of vdW ferroelectrics (FEs) are reviewed. First, theories of ferroelectricity are briefly discussed. Then, a comprehensive summary of the non-stacking vdW ferroelectric materials is provided based on their crystal structures and the emerging sliding ferroelectrics. In addition, their potential applications in various branches/frontier fields are enumerated, with a focus on artificial intelligence. Finally, the challenges and development prospects of vdW ferroelectrics are discussed.

20.
Front Neurosci ; 17: 1149410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214407

RESUMEN

With the advent of low-power neuromorphic computing systems, new possibilities have emerged for deployment in various sectors, like healthcare and transport, that require intelligent autonomous applications. These applications require reliable low-power solutions for sequentially adapting to new relevant data without loss of learning. Neuromorphic systems are inherently inspired by biological neural networks that have the potential to offer an efficient solution toward the feat of continual learning. With increasing attention in this area, we present a first comprehensive review of state-of-the-art neuromorphic continual learning (NCL) paradigms. The significance of our study is multi-fold. We summarize the recent progress and propose a plausible roadmap for developing end-to-end NCL systems. We also attempt to identify the gap between research and the real-world deployment of NCL systems in multiple applications. We do so by assessing the recent contributions in neuromorphic continual learning at multiple levels-applications, algorithms, architectures, and hardware. We discuss the relevance of NCL systems and draw out application-specific requisites. We analyze the biological underpinnings that are used for acquiring high-level performance. At the hardware level, we assess the ability of the current neuromorphic platforms and emerging nano-device-based architectures to support these algorithms in the presence of several constraints. Further, we propose refinements to continual learning metrics for applying them to NCL systems. Finally, the review identifies gaps and possible solutions that are not yet focused upon for deploying application-specific NCL systems in real-life scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...