RESUMEN
The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.
Asunto(s)
Cloruros , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Células Epiteliales/metabolismoRESUMEN
Chloride anions are the most abundant in humans. For many years, it has been believed that chloride is simply a counterion of all other cations, ensuring the electroneutrality of the extracellular space. Recent data suggests that chloride anions possess a broad spectrum of important activities that regulate vital cellular functions. It is now evident that, apart from its contribution to the electroneutrality of the extracellular space, it acts as an osmole and contributes to extracellular and intracellular volume regulation. Its anionic charge also contributes to the generation of cell membrane potential. The most interesting action of chloride anions is their ability to regulate the activity of with-no-lysine kinases, which in turn regulate the activity of sodium chloride and potassium chloride cotransporters and govern the reabsorption of salt and excretion of potassium by nephron epithelia. Chloride anions seem to play a crucial role in cell functions, such as cell volume regulation, sodium reabsorption in the distal nephron, potassium balance, and sodium sensitivity, which lead to hypertension. All of these functions are accomplished on a molecular level via complicated metabolic pathways, many of which remain poorly defined. We attempted to elucidate some of these pathways in light of recent advances in our knowledge, obtained mainly from experimental studies.
RESUMEN
With the development of accurate protein structure prediction algorithms, artificial intelligence (AI) has emerged as a powerful tool in the field of structural biology. AI-based algorithms have been used to analyze large amounts of protein sequence data including the human proteome, complementing experimental structure data found in resources such as the Protein Data Bank. The EBI AlphaFold Protein Structure Database (for example) contains over 230 million structures. In this study, these data have been analyzed to find all human proteins containing (or predicted to contain) the cytosolic glutathione transferase (cGST) fold. A total of 39 proteins were found, including the alpha-, mu-, pi-, sigma-, zeta- and omega-class GSTs, intracellular chloride channels, metaxins, multisynthetase complex components, elongation factor 1 complex components and others. Three broad themes emerge: cGST domains as enzymes, as chloride ion channels and as protein-protein interaction mediators. As the majority of cGSTs are dimers, the AI-based structure prediction algorithm AlphaFold-multimer was used to predict structures of all pairwise combinations of these cGST domains. Potential homo- and heterodimers are described. Experimental biochemical and structure data is used to highlight the strengths and limitations of AI-predicted structures.
Asunto(s)
Genoma Humano , Glutatión Transferasa , Humanos , Glutatión Transferasa/genética , Inteligencia Artificial , Algoritmos , Secuencia de AminoácidosRESUMEN
BACKGROUND: Analyses in silico suggested the upregulation of a circular RNA (circRNA), circ_0008287, in gastric cancer and possible interactions among microRNA (miR)-548c-3p, circ_0008287, and intracellular chloride channel protein 1 (CLIC1). This study aims to testify whether circ_0008287 can affect the immune escape of gastric cancer cells by regulating miR-548c-3p and CLIC1. METHODS: RT-qPCR was performed to determine the expression pattern of circ_0008287 in gastric cancer cells. Gain- and loss-of function assays were then performed to assess the effects of circ_0008287 on malignant phenotypes of cancer cells. Interactions among circ_0008287, miR-548c-3p and CLIC1 were verified by dual luciferase reporter gene, RIP and FISH assays. Effects of CLIC1 on IFN-γ secretion and apoptosis in CD8â¯+â¯T cells were evaluated by flow cytometry following co-culture of CD8â¯+â¯T cells with cancer cells overexpressing/silencing CLIC1. A gastric cancer mouse model was further developed for in vivo investigation on effects of circ_0008287 on tumorigenesis and tumor metastasis. RESULTS: circ_0008287, an upregulated circRNA in gastric cancer cells, augmented the viability as well as invasive and migratory potentials of gastric cancer cells. By competitively binding to miR-548c-3, circ_0008287 increased the expression of CLIC1, which impaired the function of CD8â¯+â¯T cells and promoted their apoptosis. After downregulation of circ_0008287, in vivo tumorigenesis and metastasis were suppressed. CONCLUSION: Hence, this study suggests the promotive role of circ_0008287 in gastric cancer progression and immune escape and further elucidates the underlying circ_0008287/miR-548c-3p/CLIC1 regulatory axis.
Asunto(s)
MicroARNs , Neoplasias Gástricas , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Canales de Cloruro/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologíaRESUMEN
Neutrophil extracellular traps (NETs) play crucial roles in atherosclerotic cardiovascular diseases such as acute coronary syndrome (ACS). Our preliminary study shows that oxidized low-density lipoprotein (oxLDL)-induced NET formation is accompanied by an elevated intracellular Cl- concentration ([Cl-]i) and reduced cystic fibrosis transmembrane conductance regulator (CFTR) expression in freshly isolated human blood neutrophils. Herein we investigated whether and how [Cl-]i regulated NET formation in vitro and in vivo. We showed that neutrophil [Cl-]i and NET levels were increased in global CFTR null (Cftr-/-) mice in the resting state, which was mimicked by intravenous injection of the CFTR inhibitor, CFTRinh-172, in wild-type mice. OxLDL-induced NET formation was aggravated by defective CFTR function. Clamping [Cl-]i at high levels directly triggered NET formation. Furthermore, we demonstrated that increased [Cl-]i by CFTRinh-172 or CFTR knockout increased the phosphorylation of serum- and glucocorticoid-inducible protein kinase 1 (SGK1) and generation of intracellular reactive oxygen species in neutrophils, and promoted oxLDL-induced NET formation and pro-inflammatory cytokine production. Consistently, peripheral blood samples obtained from atherosclerotic ApoE-/- mice or stable angina (SA) and ST-elevation ACS (STE-ACS) patients exhibited increased neutrophil [Cl-]i and SGK1 activity, decreased CFTR expression, and elevated NET levels. VX-661, a CFTR corrector, reduced the NET formation in the peripheral blood sample obtained from oxLDL-injected mice, ApoE-/- atherosclerotic mice or patients with STE-ACS by lowering neutrophil [Cl-]i. These results demonstrate that elevated neutrophil [Cl-]i during the development of atherosclerosis and ACS contributes to increased NET formation via Cl--sensitive SGK1 signaling, suggesting that defective CFTR function might be a novel therapeutic target for atherosclerotic cardiovascular diseases.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Trampas Extracelulares , Humanos , Ratones , Animales , Trampas Extracelulares/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Enfermedades Cardiovasculares/metabolismo , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismoRESUMEN
Platelet hyperactivity is essential for thrombus formation in coronary artery diseases (CAD). Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients with cystic fibrosis elevates intracellular Cl- levels ([Cl-]i) and enhanced platelet hyperactivity. In this study, we explored whether alteration of [Cl-]i has a pathological role in regulating platelet hyperactivity and arterial thrombosis formation. CFTR expression was significantly decreased, while [Cl-]i was increased in platelets from CAD patients. In a FeCl3-induced mouse mesenteric arteriole thrombosis model, platelet-specific Cftr-knockout and/or pre-administration of ion channel inhibitor CFTRinh-172 increased platelet [Cl-]i, which accelerated thrombus formation, enhanced platelet aggregation and ATP release, and increased P2Y12 and PAR4 expression in platelets. Conversely, Cftr-overexpressing platelets resulted in subnormal [Cl-]i, thereby decreasing thrombosis formation. Our results showed that clamping [Cl-]i at high levels or Cftr deficiency-induced [Cl-]i increasement dramatically augmented phosphorylation (Ser422) of serum and glucocorticoid-regulated kinase (SGK1), subsequently upregulated P2Y12 and PAR4 expression via NF-κB signaling. Constitutively active mutant S422D SGK1 markedly increased P2Y12 and PAR4 expression. The specific SGK1 inhibitor GSK-650394 decreased platelet aggregation in wildtype and platelet-specific Cftr knockout mice, and platelet SGK1 phosphorylation was observed in line with increased [Cl-]i and decreased CFTR expression in CAD patients. Co-transfection of S422D SGK1 and adenovirus-induced CFTR overexpression in MEG-01 cells restored platelet activation signaling cascade. Our results suggest that [Cl-]i is a novel positive regulator of platelet activation and arterial thrombus formation via the activation of a [Cl-]i-sensitive SGK1 signaling pathway. Therefore, [Cl-]i in platelets is a novel potential biomarker for platelet hyperactivity, and CFTR may be a potential therapeutic target for platelet activation in CAD.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Proteínas Inmediatas-Precoces , Trombosis , Adenosina Trifosfato/metabolismo , Animales , Plaquetas/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Trombosis/metabolismoRESUMEN
GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.
Asunto(s)
Trastorno Autístico , Bumetanida , Animales , Encéfalo , Bumetanida/farmacología , Bumetanida/uso terapéutico , Cloruros , Ácido gamma-AminobutíricoRESUMEN
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl-]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl-]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl-]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl-, K+, Na+) and synaptic stimulation of Shaffer's collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl- and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl- and pH.
Asunto(s)
Química Encefálica , Cloruros/análisis , Animales , Colorantes Fluorescentes/análisis , Proteínas Fluorescentes Verdes/análisis , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/análisis , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Imagen Óptica , Proteína Fluorescente RojaRESUMEN
High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl-]int) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl-]int are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl-]int in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature. We observed substantial heterogeneity in baseline [Cl-]int, ranging from 14.0 ± 2.0 mM in neocortical astrocytes to 28.4 ± 3.0 mM in dentate gyrus astrocytes. Chloride accumulation by the Na+-K+-2Cl- cotransporter (NKCC1) and chloride outward transport (efflux) through K+-Cl- cotransporters (KCC1 and KCC3) or excitatory amino acid transporter (EAAT) anion channels control [Cl-]int to variable extent in distinct brain regions. In hippocampal astrocytes, blocking NKCC1 decreased [Cl-]int, whereas KCC or EAAT anion channel inhibition had little effect. In contrast, neocortical astrocytic or RGL [Cl-]int was very sensitive to block of chloride outward transport, but not to NKCC1 inhibition. Mathematical modeling demonstrated that higher numbers of NKCC1 and KCC transporters can account for lower [Cl-]int in neocortical than in hippocampal astrocytes. Energy depletion mimicking ischemia for up to 10 min did not result in pronounced changes in [Cl-]int in any of the tested glial cell types. However, [Cl-]int changes occurred under ischemic conditions after blocking selected anion transporters. We conclude that stimulated chloride accumulation and chloride efflux compensate for each other and prevent glial swelling under transient energy deprivation.
RESUMEN
In neuronal precursors and immature neurons, the depolarizing (excitatory) effect of γ-Aminobutyric acid (GABA) signaling is associated with elevated [Cl-]i; as brain cells mature, a developmental switch occurs, leading to the decrease of [Cl-]i and to the hyperpolarizing (inhibitory) effect of GABAergic signaling. [Cl-]i is controlled by two chloride co-transporters: NKCC1, which causes Cl- to accumulate into the cells, and KCC2, which extrudes it. The ontogenetic upregulation of the latter determines the above-outlined switch; however, many other factors contribute to the correct [Cl-]i in mature neurons. The dysregulation of chloride homeostasis is involved in seizure generation and has been associated with schizophrenia, Down's Syndrome, Autism Spectrum Disorder, and other neurodevelopmental disorders. Recently, much effort has been put into developing new drugs intended to inhibit NKCC1 activity, while no attention has been paid to the origin of [Cl-]i dysregulation. Our study examines the pathophysiology of Cl- homeostasis and focuses on the impact of oxidative stress (OS) and inflammation on the activity of Cl- co-transporters, highlighting the relevance of OS in numerous brain abnormalities and diseases. This hypothesis supports the importance of primary prevention during pregnancy. It also integrates the therapeutic framework addressed to restore normal GABAergic signaling by counteracting the alteration in chloride homeostasis in central nervous system (CNS) cells, aiming at limiting the use of drugs that potentially pose a health risk.
RESUMEN
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
RESUMEN
Leucine-rich repeat containing family 8 (LRRC8) proteins form the volume-regulated anion channel (VRAC). Recently, they were shown to be required for normal differentiation and fusion of C2C12 myoblasts, by promoting membrane hyperpolarization and intracellular Ca2+ signals. However, the mechanism by which they are involved remained obscure. Here, using a FRET-based sensor for VRAC activity, we show temporary activation of VRAC within the first 2 h of myogenic differentiation. During this period, we also observed a significant decrease in the intracellular Cl- concentration that was abolished by the VRAC inhibitor carbenoxolone. However, lowering the intracellular Cl- concentration by extracellular Cl- depletion did not promote differentiation as judged by the percentage of myogenin-positive nuclei or total myogenin levels in C2C12 cells. Instead, it inhibited myosin expression and myotube formation. Together, these data suggest that VRAC is activated and mediates Cl- efflux early on during myogenic differentiation, and a moderate intracellular Cl- concentration is necessary for myoblast fusion.
Asunto(s)
Cloruros/metabolismo , Proteínas de la Membrana/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Animales , Carbenoxolona/farmacología , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Transporte Iónico/efectos de los fármacos , Ratones , Desarrollo de Músculos/fisiología , Mioblastos Esqueléticos/efectos de los fármacosRESUMEN
In the airway, Cl- is the most abundant anion and is critically involved in transepithelial transport. The correlation of the abnormal expression and activation of chloride channels (CLCs), such as cystic fibrosis transmembrane conductance regulators (CFTRs), anoctamin-1, and CLC-2, with cell migration capability suggests a relationship between defective Cl- transport and epithelial wound repair. However, whether a correlation exists between intracellular Cl- and airway wound repair capability has not been explored thus far, and the underlying mechanisms involved in this relationship are not fully defined. Methods: In this work, the alteration of intracellular chloride concentration ([Cl-]i) was measured by using a chloride-sensitive fluorescent probe (N-[ethoxycarbonylmethyl]-6-methoxyquinolium bromide). Results: We found that clamping with high [Cl-]i and 1 h of treatment with the CLC inhibitor CFTR blocker CFTRinh-172 and chloride intracellular channel inhibitor IAA94 increased intracellular Cl- concentration ([Cl-]i) in airway epithelial cells. This effect improved epithelial cell migration. In addition, increased [Cl-]i in cells promoted F-actin reorganization, decreased cell stiffness, and improved RhoA activation and LIMK1/2 phosphorylation. Treatment with the ROCK inhibitor of Y-27632 and ROCK1 siRNA significantly attenuated the effects of increased [Cl-]i on LIMK1/2 activation and cell migration. In addition, intracellular Ca2+ concentration was unaffected by [Cl-]i clamping buffers and CFTRinh-172 and IAA94. Conclusion: Taken together, these results suggested that Cl- accumulation in airway epithelial cells could activate the RhoA/ROCK/LIMK cascade to induce F-actin reorganization, down-regulate cell stiffness, and improve epithelial migration.
Asunto(s)
Cloruros/metabolismo , Mucosa Respiratoria/citología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Amidas/farmacología , Benzoatos/farmacología , Transporte Biológico , Línea Celular , Movimiento Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glicolatos/farmacología , Humanos , Quinasas Lim/metabolismo , Fosforilación , Piridinas/farmacología , Mucosa Respiratoria/metabolismo , Transducción de Señal/efectos de los fármacos , Tiazolidinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidoresRESUMEN
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl- cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine. Resulting disruption of GABAAR-mediated hyperpolarization/inhibition was shown using genetically-encoded voltage (Archon1) and calcium (GCaMP6f) indicators. The HIV proteins Tat (acting through NMDA receptors) and R5-gp120 (acting via CCR5) but not X4-tropic gp120 (acting via CXCR4), and morphine (acting through µ-opioid receptors) all induced KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, including PWH exposed to opiates.
Asunto(s)
Analgésicos Opioides/administración & dosificación , VIH-1/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/administración & dosificación , Morfina/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/virología , Simportadores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Humanos , Masculino , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Neuronas/metabolismo , Cotransportadores de K ClRESUMEN
An increase in intracellular Cl- concentration ([Cl-]i) may be a general response of airway epithelial cells to various stimuli and may participate in some basic cellular functions. However, whether the basic functional activities of cells, such as proliferation and wound healing, are related to Cl- activities remains unclear. This study aimed to investigate the effects and potential mechanisms of [Cl-]i on the proliferation and wound healing ability of airway epithelial BEAS-2B cells. BEAS-2B cells were treated with four Cl- channel inhibitors (T16Ainh-A01, CFTRinh-172, CaCCinh-A01, and IAA-94), and the Cl- fluorescence probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used. Results showed that all Cl- channel inhibitors could increase [Cl-]i in BEAS-2B cells. The increased [Cl-]i induced by Cl- channel inhibitors or clamping [Cl-]i at high levels enhanced the phosphorylation of focal adhesion kinase (FAK) and subsequently promoted the proliferation and wound healing ability of BEAS-2B cells. By contrast, the FAK inhibitor PF573228 abrogated these effects induced by the increased [Cl-]i. FAK also activated the PI3K/AKT signaling pathway. In conclusion, increased [Cl-]i promotes the proliferation and wound healing ability of BEAS-2B cells by activating FAK to activate the PI3K/AKT signaling pathway. Intracellular Cl- may act as a signaling molecule to regulate the proliferation and wound healing ability of airway epithelial cells.
Asunto(s)
Proliferación Celular , Cloruros/metabolismo , Células Epiteliales/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Línea Celular , Activación Enzimática , Células Epiteliales/citología , Humanos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Transducción de Señal , Cicatrización de HeridasRESUMEN
Ion Transport across the cell membrane is required to maintain cell volume homeostasis. In response to changes in extracellular osmolarity, most cells activate specific metabolic or membrane-transport pathways to respond to cell swelling or shrinkage and return their volume to its normal resting state. This process involves the rapid adjustment of the activities of channels and transporters that mediate flux of K+, Na+, Cl-, and small organic osmolytes. Cation chloride cotransporters (CCCs) NKCCs and KCCs are a family of membrane proteins modulated by changes in cell volume and/or in the intracellular chloride concentration ([Cl-]i). Cell swelling triggers regulatory volume decrease (RVD), promoting solute and water efflux to restore normal cell volume. Swelling-activated KCCs mediate RVD in most cell types. In contrast, cell shrinkage triggers regulatory volume increase (RVI), which involves the activation of the NKCC1 cotransporter of the CCC family. Regulation of the CCCs during RVI and RVD by protein phosphorylation is a well-characterized mechanism, where WNK kinases and their downstream kinase substrates, SPAK and OSR1 constitute the essential phospho-regulators. WNKs-SPAK/OSR1-CCCs complex is required to regulate cell shrinkage-induced RVI or cell swelling-induced RVD via activating or inhibitory phosphorylation of NKCCs or KCCs, respectively. WNK1 and WNK4 kinases have been established as [Cl-]i sensors/regulators, while a role for WNK3 kinase as a cell volume-sensing kinase has emerged and is proposed in this chapter.
Asunto(s)
Tamaño de la Célula , Animales , Cloruros/metabolismo , Humanos , Transporte Iónico/fisiología , Fosforilación , Sodio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismoRESUMEN
The type 2 K+/Cl- cotransporter (KCC2) allows neurons to maintain low intracellular levels of Cl-, a prerequisite for efficient synaptic inhibition. Reductions in KCC2 activity are evident in epilepsy; however, whether these deficits directly contribute to the underlying pathophysiology remains controversial. To address this issue, we created knock-in mice in which threonines 906 and 1007 within KCC2 have been mutated to alanines (KCC2-T906A/T1007A), which prevents its phospho-dependent inactivation. The respective mice appeared normal and did not show any overt phenotypes, and basal neuronal excitability was unaffected. KCC2-T906A/T1007A mice exhibited increased basal neuronal Cl- extrusion, without altering total or plasma membrane accumulation of KCC2. Critically, activity-induced deficits in synaptic inhibition were reduced in the mutant mice. Consistent with this, enhanced KCC2 was sufficient to limit chemoconvulsant-induced epileptiform activity. Furthermore, this increase in KCC2 function mitigated induction of aberrant high-frequency activity during seizures, highlighting depolarizing GABA as a key contributor to the pathological neuronal synchronization seen in epilepsy. Thus, our results demonstrate that potentiating KCC2 represents a therapeutic strategy to alleviate seizures.
Asunto(s)
Epilepsia/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Simportadores/metabolismo , Membranas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sustitución de Aminoácidos , Animales , Epilepsia/genética , Epilepsia/patología , Técnicas de Sustitución del Gen , Ratones , Mutación Missense , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Simportadores/genética , Membranas Sinápticas/genética , Membranas Sinápticas/patología , Ácido gamma-Aminobutírico/genética , Cotransportadores de K ClRESUMEN
The Na+-Cl- cotransporter (NCC) in distal convoluted tubule (DCT) plays important roles in renal NaCl reabsorption. The current hypothesis for the mechanism of regulation of NCC focuses on WNK4 and intracellular Cl- concentration ([Cl-]i). WNK kinases bind Cl-, and Cl- binding decreases the catalytic activity. It is believed that hypokalemia under low K+ intake decreases [Cl-]i to activate WNK4, which thereby phosphorylates and stimulates NCC through activation of SPAK. However, increased NCC activity and apical NaCl entry would mitigate the fall in [Cl-]i. Whether [Cl-]i in DCT under low-K+ diet is sufficiently low to activate WNK4 is unknown. Furthermore, increased luminal NaCl delivery also stimulates NCC and causes upregulation of the transporter. Unlike low K+ intake, increased luminal NaCl delivery would tend to increase [Cl-]i. Thus we investigated the role of WNK4 and [Cl-]i in regulating NCC. We generated Wnk4-knockout mice and examined regulation of NCC by low K+ intake and by increased luminal NaCl delivery in knockout (KO) and wild-type mice. Wnk4-KO mice have marked reduction in the abundance, phosphorylation, and functional activity of NCC vs. wild type. Low K+ intake increases NCC phosphorylation and functional activity in wild-type mice, but not in Wnk4-KO mice. Increased luminal NaCl delivery similarly upregulates NCC, which, contrary to low K+ intake, is not abolished in Wnk4-KO mice. The results reveal that modulation of WNK4 activity by [Cl-]i is not the sole mechanism for regulating NCC. Increased luminal NaCl delivery upregulates NCC via yet unknown mechanism(s) that may override inhibition of WNK4 by high [Cl-]i.
Asunto(s)
Túbulos Renales Distales/enzimología , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio/metabolismo , Animales , Transporte Biológico , Regulación Enzimológica de la Expresión Génica , Inyecciones Subcutáneas , Túbulos Renales Distales/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Eliminación Renal , Reabsorción Renal , Cloruro de Sodio/administración & dosificación , Inhibidores de los Simportadores del Cloruro de Sodio/farmacología , Miembro 3 de la Familia de Transportadores de Soluto 12/deficiencia , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismoRESUMEN
BACKGROUND: Tanshinone IIA Sodium sulfonate (STS) is clinically used for treating cardiovascular diseases in Traditional Chinese Medicine due to its antioxidation and anti-inflammation activities. Intracellular chloride channel 1 (CLIC1) participates in the regulation of oxidative stress and inflammation. This study investigates whether CLIC1 mediates the cardioprotective effects of STS. METHODS: STS were used to treat atherosclerosis (AS) induced by feeding Apolipoprotein E-deficient (ApoE-/-) mice with a high-fat, cholesterol-rich diet. In addition, normal and CLIC1-/- human umbilical vein endothelial cells were treated with STS after exposure to H2O2 for 12h. The oxidative status was determined by analyzing reactive oxygen species(ROS) and malondialdehyde (MDA) levels. ELISA, qRT-PCR and Western blot were used to determine the levels of TNF-α, IL-6, ICAM-1 and VCAM-1. CLIC1 cellular localization was examined by immunofluorescence. Chloride ion concentration was detected with chloride ion quenchers (MQAE). RESULTS: STS treatment decreased atherosclerotic lesion area by 3.5 times (P = 0.001) in vivo. Meanwhile, STS reduced MDA production (13.6%, P = 0.008), increased SOD activity (113.6%, P = 0.008), decreased TNF-α (38.6%, P = 0.008) and IL-6 (43.0%, P = 0.03) levels, and downregulated the expression of CLIC1, ICAM-1, and VCAM-1 in the atherosclerotic mice. The dose-dependent anti-oxidative and anti-inflammatory effects of STS were further confirmed in vitro. Furthermore, CLIC1 depletion abolished the STS-mediated decrease of ROS and MDA production in HUVEC cells. Additionally, STS inhibited both CLIC1 membrane translocation and chloride ion concentration. CONCLUSION: The anti-oxidant, and anti-inflammation properties of STS in preventing AS is mediated by its inhibition of CLIC1 expression and membrane translocation.
Asunto(s)
Antioxidantes/metabolismo , Aterosclerosis/patología , Canales de Cloruro/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Fenantrenos/farmacología , Animales , Aterosclerosis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/tratamiento farmacológico , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/uso terapéutico , Transporte de Proteínas/efectos de los fármacosRESUMEN
The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing responses of the inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. The two KCC2 isoforms, KCC2a and KCC2b differ by their N-termini as a result of alternative promoter usage. Whereas the role of KCC2b in mediating the chloride transport is unequivocal, the physiological role of KCC2a in neurons has remained obscure. We show that KCC2a isoform can decrease the intracellular chloride concentration in cultured neurons and attenuate calcium responses evoked by application of the GABAA receptor agonist muscimol. While the biotinylation assay detected both KCC2 isoforms at the cell surface of cultured neurons, KCC2a was not detected at the plasma membrane in immunostainings, suggesting that the N-terminal KCC2a epitope is masked. Confirming this hypothesis, KCC2a surface expression was detected by the C-terminal KCC2 pan antibody but not by the N-terminal KCC2a antibody in KCC2b-deficient neurons. One possible cause for the epitope masking is the binding site of Ste20-related proline-alanine-rich kinase (SPAK) in the KCC2a N-terminus. SPAK, a known regulator of K-Cl cotransporters, was co-immunoprecipitated in a complex with KCC2a but not KCC2b isoform. Moreover, SPAK overexpression decreased the transport activity of KCC2a but not that of KCC2b, as revealed by rubidium flux assay in HEK293 cells. Thus, our data indicate that both KCC2 isoforms perform as chloride cotransporters in neuronal cells, while their N-terminal heterogeneity could play an important role in fine-tuning of the K-Cl transport activity.