Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12233, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806575

RESUMEN

The intensification of the Internet of Health Things devices created security concerns due to the limitations of these devices and the nature of the healthcare data. While dealing with the security challenges, several authentication schemes, protocols, processes, and standards have been adopted. Consequently, making the right decision regarding the installation of a secure authentication solution or procedure becomes tricky and challenging due to the large number of security protocols, complexity, and lack of understanding. The major objective of this study is to propose an IoHT-based assessment framework for evaluating and prioritizing authentication schemes in the healthcare domain. Initially, in the proposed work, the security issues related to authentication are collected from the literature and consulting experts' groups. In the second step, features of various authentication schemes are collected under the supervision of an Internet of Things security expert using the Delphi approach. The collected features are used to design suitable criteria for assessment and then Graph Theory and Matrix approach applies for the evaluation of authentication alternatives. Finally, the proposed framework is tested and validated to ensure the results are consistent and accurate by using other multi-criteria decision-making methods. The framework produces promising results such as 93%, 94%, and 95% for precision, accuracy, and recall, respectively in comparison to the existing approaches in this area. The proposed framework can be picked as a guideline by healthcare security experts and stakeholders for the evaluation and decision-making related to authentication issues in IoHT systems.

2.
Digit Health ; 9: 20552076231177144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252257

RESUMEN

Objective: This review paper aims to evaluate existing solutions in healthcare authentication and provides an insight into the technologies incorporated in Internet of Healthcare Things (IoHT) and multi-factor authentication (MFA) applications for next-generation authentication practices. Our review has two objectives: (a) Review MFA based on the challenges, impact and solutions discussed in the literature; and (b) define the security requirements of the IoHT as an approach to adapting MFA solutions in a healthcare context. Methods: To review the existing literature, we indexed articles from the IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink databases. The search was refined to combinations of 'authentication', 'multi-factor authentication', 'Internet of Things authentication', and 'medical authentication' to ensure that the retrieved journal articles and conference papers were relevant to healthcare and Internet of Things-oriented authentication research. Results: The concepts of MFA can be applied to healthcare where security can often be overlooked. The security requirements identified result in stronger methodologies of authentication such as hardware solutions in combination with biometric data to enhance MFA approaches. We identify the key vulnerabilities of weaker approaches to security such as password use against various cyber threats. Cyber threats and MFA solutions are categorised in this paper to facilitate readers' understanding of them in healthcare domains. Conclusions: We contribute to an understanding of up-to-date MFA approaches and how they can be improved for use in the IoHT. This is achieved by discussing the challenges, benefits, and limitations of current methodologies and recommendations to improve access to eHealth resources through additional layers of security.

3.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671685

RESUMEN

Advances in wearable device technology pave the way for wireless health monitoring for medical and non-medical applications. In this work, we present a wearable heart rate monitoring platform communicating in the sub-6GHz 5G ISM band. The proposed device is composed of an Aluminium Nitride (AlN) piezoelectric sensor, a patch antenna, and a custom printed circuit board (PCB) for data acquisition and transmission. The experimental results show that the presented system can acquire heart rate together with diastolic and systolic duration, which are related to heart relaxation and contraction, respectively, from the posterior tibial artery. The overall system dimension is 20 mm by 40 mm, and the total weight is 20 g, making this device suitable for daily utilization. Furthermore, the system allows the simultaneous monitoring of multiple subjects, or a single patient from multiple body locations by using only one reader. The promising results demonstrate that the proposed system is applicable to the Internet of Healthcare Things (IoHT), and particularly Integrated Clinical Environment (ICE) applications.

4.
Int J Inf Technol ; 15(1): 67-77, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35874858

RESUMEN

Healthcare is on top of the agenda of all governments in the world as it is related to the well-being of the people. Naturally, this domain has attracted the attention of many researchers globally, who have studied the development of its different phases, including E-Health and the Internet of Health Things (IoHT). In this paper, the difference between the recent concepts of healthcare (E-health, M-Health, S-Health, I-Health, U-Health, and IoHT/IoMT) is analyzed based on the main services, applications, and technologies in each concept. The paper has also studied the latest developments in IoHT, which are linked to existing phases of development. A classification of groups of services and constituents of IoHT, linked to the latest technologies, is also provided. In addition, challenges, and future scope of research in this domain concerning the wellbeing of the people in the face of ongoing COVID-19 and future pandemics are explored.

5.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501776

RESUMEN

Nowadays, finding genetic components and determining the likelihood that treatment would be helpful for patients are the key issues in the medical field. Medical data storage in a centralized system is complex. Data storage, on the other hand, has recently been distributed electronically in a cloud-based system, allowing access to the data at any time through a cloud server or blockchain-based ledger system. The blockchain is essential to managing safe and decentralized transactions in cryptography systems such as bitcoin and Ethereum. The blockchain stores information in different blocks, each of which has a set capacity. Data processing and storage are more effective and better for data management when blockchain and machine learning are integrated. Therefore, we have proposed a machine-learning-blockchain-based smart-contract system that improves security, reduces consumption, and can be trusted for real-time medical applications. The accuracy and computation performance of the IoHT system are safely improved by our system.


Asunto(s)
Cadena de Bloques , Humanos , Aprendizaje Automático , Manejo de Datos , Probabilidad , Confianza
6.
Healthcare (Basel) ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35885736

RESUMEN

With the rapid development of Internet of Things (IoT) technologies, traditional disease diagnoses carried out in medical institutions can now be performed remotely at home or even ambient environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT applications, inertial measurement unit (IMU)-based systems play a significant role in the detection of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional numerical interpretation methods have proven to be challenging to provide satisfying detection accuracies owing to the low quality of raw data, especially under strong electromagnetic interference (EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been proposed to smartly map IMU-captured data on disease detection and progress. After a decade of development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted in four databases covering the aforementioned topic for articles published in the past six years. Eighty-one articles were included and discussed concerning two aspects: different ML techniques and application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation, and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems for IoHT.

7.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35746127

RESUMEN

Present-day intelligent healthcare applications offer digital healthcare services to users in a distributed manner. The Internet of Healthcare Things (IoHT) is the mechanism of the Internet of Things (IoT) found in different healthcare applications, with devices that are attached to external fog cloud networks. Using different mobile applications connecting to cloud computing, the applications of the IoHT are remote healthcare monitoring systems, high blood pressure monitoring, online medical counseling, and others. These applications are designed based on a client-server architecture based on various standards such as the common object request broker (CORBA), a service-oriented architecture (SOA), remote method invocation (RMI), and others. However, these applications do not directly support the many healthcare nodes and blockchain technology in the current standard. Thus, this study devises a potent blockchain-enabled socket RPC IoHT framework for medical enterprises (e.g., healthcare applications). The goal is to minimize service costs, blockchain security costs, and data storage costs in distributed mobile cloud networks. Simulation results show that the proposed blockchain-enabled socket RPC minimized the service cost by 40%, the blockchain cost by 49%, and the storage cost by 23% for healthcare applications.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Nube Computacional , Seguridad Computacional , Atención a la Salud , Humanos , Internet
9.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466416

RESUMEN

Privacy protection in electronic healthcare applications is an important consideration, due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks that are used within a healthcare setting have unique challenges and security requirements (integrity, authentication, privacy, and availability) that must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This poses certain restrictions on the practical implementation of these devices. In order to address these issues, this paper proposes a privacy-preserving two-tier data inference framework solution that conserves battery consumption by inferring the sensed data and reducing data size for transmission, while also protecting sensitive data from leakage to adversaries. The results from experimental evaluations on efficiency and privacy show the validity of the proposed scheme, as well as significant data savings without compromising data transmission accuracy, which contributes to energy efficiency of IoHT sensor devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...