Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Nano Lett ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302642

RESUMEN

The interaction of water with solid surfaces is crucial for a wide range of disciplines, including catalysis, environmental science, corrosion, geology, and biology. In this study, we present a combined experimental and theoretical investigation that elucidates the interaction of water with a model iron oxide surface under near ambient conditions (i.e., room temperature and water vapor in the mbar range). Our findings reveal that surface hydroxylation can be controlled at the nanoscale by the local properties of the oxide film, such as local rumpling and electrostatic potential. The iron oxide surface presents alternating hydrophilic and hydrophobic domains, creating after water exposure a hexagonal pattern with a pitch of approximately 3 nm, where the highly hydroxylated regions act as nucleation centers for nanoconfined water molecule clusters.

2.
Discov Nano ; 19(1): 158, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342049

RESUMEN

Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.

3.
MethodsX ; 13: 102940, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290470

RESUMEN

This paper provides a simple method for producing a metal oxide thin layer methodology by atmospheric pressure chemical vapor deposition (APCVD) synthesis over stainless steel substrates. This methodology enables the formation of thin iron oxide layers at its performance at various temperatures of 330 °C, 430 °C, and 530 °C. The deposition arises from thermal decomposition of the iron organometallic precursor Fe3(CO)12, forming a thin layer of iron oxide is, by the ozone present in the reaction chamber promoting the deposition of the iron oxide particles over the substrate. The Raman characterization suggest that at 330 °C, a mixture of hematite and magnetite is predominant on the as deposited substrates, also hematite modes show to be more pronounced as the band at 300 cm-1 narrows. Conversely, magnetite is prominent at higher synthesis temperatures, exhibiting a more intense Eg5 mode at 680 cm-1. The particles exhibit a uniform morphology, with both metal oxide phases coexisting. The average diameter of the particles is 50 nanometers as scanning electronic microscopy shows in a transversal sample section.•The formation of particles is attributed to the combination of iron ions +2 and +3 in the deposition process and their interaction with oxygen in the given synthesis parameters at atmospheric pressure chemical vapor deposition (APCVD).

4.
J Hazard Mater ; 480: 135864, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39298968

RESUMEN

The distribution characteristics of Cr(VI) species in contaminated soil is crucial for soil remediation; however, there is currently a lack of methods for analysing anionic Cr(VI) species in soil. This study has developed a novel sequential extraction method for speciation of Cr(VI) and Cr(III). Besides extraction experiments, simulated chromium species were prepared to verify the presence of proposed chromium species. The results show that Cr(VI) species in soil can be categorized into water-soluble Cr(VI), electrostatically adsorbed Cr(VI), Cr(VI) specifically adsorbed by minerals containing exchangeable Ca2+, Cr(VI) specifically adsorbed by hydrous metal oxides, calcium chromate Cr(VI) and stable complexed adsorption Cr(VI). These Cr(VI) species can be selectively extracted by specific solutions through ion exchange or weak acid dissolution. The most stable Cr(VI) species is Cr(VI) complexed by hydrous iron oxides through bidentate ligand binding; only by dissolution of hydrous iron oxides can this Cr(VI) species be leached. The distribution of Cr(VI) species is closely linked to particular soil compositions including exchangeable Ca2+ and hydrous iron oxides which determinate the Cr(VI) adsorption in soil. Cr(III) species comprise Fe-Cr coprecipitate hydroxides Cr(III), Fe-Mn oxide-bound Cr(III), organic matter-bound Cr(III) and residual Cr(III). Their distribution depends on the types of reductants present in the soil.

5.
J Environ Manage ; 369: 122286, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213849

RESUMEN

Active iron oxides, especially poorly crystalline forms, benefit soil organic carbon (SOC) accumulation via directly bounding and indirectly promoting aggregation. However, it remains unclear on the impacts of active iron oxides on SOC accumulation in paddy and upland soils under long-term fertilization regimes. Here, we attempted to clarify the underlying mechanisms of amorphous (FeO) and organically complexed (FeP) iron oxides mediating SOC accumulation in paddy and upland soils based on two long-term fertilization experiments (both including no fertilization [CK]; chemical nitrogen, phosphorus and potassium [NPK] and NPK plus manure [NPKM] treatments). Results showed that compared to upland soil, Fe-bound organic carbon (Fe-bound OC) content in paddy soil, occupying 21-30% of SOC, was 77% higher on average, due to larger amounts of FeO (+31%) and FeP (+224%). The FeO and FeP were positively related to mean weight diameter (MWD) of soil aggregates across paddy and upland soils. Compared to NPK treatment, NPKM treatment strongly increased FeO (+41%), FeP (+60%) and associated Fe-bound OC (+19%) in paddy soil, and increased FeO (+17%) and FeP (+25%) while decreasing Fe-bound OC (-9%) in upland soil. These combined findings indicated the importance of poorly crystalline iron oxides facilitating Fe-bound OC formation and its contribution to SOC accumulation in paddy soil rather than upland soil. Moreover, long-term manure amendment could enhance SOC accumulation by increasing Fe-bound OC and aggregation stability in paddy soil and enhancing physical protection in upland soil, largely attributed to increased poorly crystalline iron oxides. Overall, these results highlight the potential mechanisms through which active iron oxides regulate SOC accumulation and guide fertilization management in paddy and upland soils.


Asunto(s)
Carbono , Compuestos Férricos , Fertilizantes , Suelo , Suelo/química , Carbono/metabolismo , Agricultura , Fósforo/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Oryza/metabolismo , Oryza/crecimiento & desarrollo
6.
Sci Total Environ ; 951: 175770, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182782

RESUMEN

Milk vetch (Astragalus sinicus L.) returning and lime materials is employed as an effective strategy for remediating cadmium (Cd)-contaminated paddy fields. However, the combined effects of them on alleviating Cd pollution and the underlying mechanisms remain poorly explored. Therefore, this study investigated the impact of these combined treatments on soil properties, iron oxides, iron plaque, mineral elements, and amino acids through a field experiment. The following treatments were employed: lime (LM), limestone (LS), milk vetch (MV), MV + LM (MVLM), and MV + LS (MVLS), and a control (CK) group with no materials. Results demonstrated that treatments significantly decreased soil available Cd by 19.40-32.55 %, 10.20-39.58 %, and 25.36-40.66 % at tillering, filling, and maturing stages compared to CK, respectively. Moreover, exchangeable Cd was transformed into more stable fractions. Compared with individual treatments, MVLM and MVLS treatments further decreased available Cd and exchangeable Cd. Overall, Cd in brown rice was reduced by 18.97-77.39 % compared with CK. And the Cd in iron plaque decreased by 14.12-31.14 %, 24.65-61.60 %, 2.6-38.28 % across three stages. Furthermore, soil pH, dissolved organic carbon, and cation exchange capacity increased, along with 0.22-62.09 % and 0.57-10.66 % increases in free and amorphous iron oxide contents at all stages, respectively. Compared with lime alone, the integration of MV returning facilitated increased formation of Fed, Feo and enhanced the antagonistic effect among grain Ca with Cd; Additionally, it increased AAs in brown rice, improving rice quality and potentially reducing Cd transport. Mantel tests and Partial least squares path modeling revealed a significant positive correlation between Cd in IP and rice Cd uptake and a significant negative correlation between available Cd, Fed and Feo. These findings provide valuable insights into the mechanisms involved in mitigating soil Cd bioavailability using integrated approaches with MV returning and lime materials.


Asunto(s)
Cadmio , Compuestos de Calcio , Oryza , Óxidos , Contaminantes del Suelo , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Restauración y Remediación Ambiental/métodos
7.
Sci Total Environ ; 951: 175472, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142414

RESUMEN

Acetaminophen (APAP) is a well-known type of over-the-counter painkillers and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP, effectively. Innovative catalysts of tungsten-modified iron oxides (TF) were successfully developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR. With the synthesis method, tungsten was successfully incorporated into iron oxides to form ferrites and other magnetic iron oxides with a high porosity of 19.7 % and a large surface area of 29.5 m2/g. Also, their catalytic activities for APAP degradation by activating peroxymonosulfate (PMS) were evaluated under various conditions. Under optimal conditions, TF 2.0 showed the highest APAP degradation of 95 % removal with a catalyst loading of 2.0 g/L, initial APAP concentration of 5 mg/L, PMS of 6.5 mM, and pH 2.15 at room temperature. No inhibition by solution pHs, alkalinity, and humic acid was observed for APAP degradation in this study. The catalysts also showed chemical and mechanical stability, achieving 100 % degradation of 1 mg/L APAP during reusability tests with three consecutive experiments. These results show that TFs can effectively degrade persistent contaminants of emerging concern in water, offering an impactful contribution to wastewater treatment to protect human health and the ecosystem.


Asunto(s)
Acetaminofén , Compuestos Férricos , Tungsteno , Contaminantes Químicos del Agua , Tungsteno/química , Acetaminofén/química , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Catálisis
8.
Small ; : e2402717, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148218

RESUMEN

Investigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single-crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single-crystal and polycrystalline maghemite nanowires through solid-phase transformation. These significant findings provide new insights into the size-dependent structural evolution and phase transformation of iron oxides at the nanoscale.

9.
J Hazard Mater ; 477: 135392, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094314

RESUMEN

Iron (Fe) oxides have a strong adsorption affinity for Cd and organic carbon (SOC). However, under alternate wet-dry (IF) condition,the influences of Fe oxides on the speciation and disrtribution of Cd and SOC in soil aggregates are unkown. In the present study, soils untreated (S), removed (S-Fe) or added (S+Fe) Fe oxide soils were blended with cadmium chloride solution and cultivated for 56 days under different moisture management practices. Compared with the S-Fe soil, the IF treatment increased the contents of Fe oxide-bound SOC (Fe-OC) and Fe/Mn oxide-bound Cd (Fe/Mn-Cd) by 18.5-29.8-fold and 1.45-2.45-fold, repectively, in the S and S+Fe soils, corresponding to a 36 %-42 % increase in the recalcitrant C pool (RCP) and a 53 %-87 % decrease in the exchangeable Cd content. These results could be attributed to soil particle aggregation and Fe redistribution. Fe addition promoted the transfer of Cd/SOC accumulated in microaggregates to macroaggregates and increased the variable negative charge content in macroaggregates and the adsorption capacity of macroaggregates for Cd/SOC. More Cd/SOC accumulated in macroaggregates in Fe oxide-bound form, which reduced the risk of Cd migration and Cd availability and increased the physical protection of SOC. Therefore, Fe oxide has great potential to simultaneously reduce carbon emissions and cadmium toxicity in paddy soil.

10.
J Hazard Mater ; 477: 135378, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094313

RESUMEN

Despite the importance of surface iron (hydr)oxides (Fe-(hydr)oxides) for the decontamination performance of zerovalent iron (ZVI) -based technologies has been well recognized, controversial understandings of their exact roles still exist due to the complex species distribution of Fe-(hydr)oxides. Herein, we re-structured the surface of ZVI using eight distinct Fe-(hydr)oxides and analyzed their species-specific effects on the performance of ZVI for Se(IV) under well-controlled conditions. The kinetics-relevant performance indicators (Se(IV) removal rates, Fe2+ release rates, and the utilization ratio of ZVI) under the effect of each Fe-(hydr)oxide roughly followed the order: δ-FeOOH > Fe5HO8·4H2O > α-FeOOH > ß-FeOOH > Î³-FeOOH > Î³-Fe2O3 > Fe3O4 > α-Fe2O3. Multiple linear regression analysis shows that the large pore volume and size (instead of specific surface area), low open-circuit potential, and low electrochemical impedance are key positive properties for kinetics-relevant performance. Besides, for electron efficiency of ZVI, only Fe3O4 increased the value to 50.0%, due to the contribution of its ferrous components, while others did not change it (∼20%). Additional experiments with commercial ZVI covered by individual Fe-(hydr)oxides confirmed the observed species-specific trends. All these results not only provide new basis for mechanism explanation but also have practical implications for the production or modification of ZVI.

11.
Water Res ; 262: 122125, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053210

RESUMEN

Anaerobic digestion is an indispensable technical option towards green and low-carbon wastewater treatment, with interspecies electron transfer (IET) playing a key role in its efficiency and operational stability. The exogenous semiconductive iron oxides have been proven to effectively enhance IET, while the cognition of the physicochemical-biochemical coupling stimulatory mechanism was circumscribed and remains to be elucidated. In this study, semiconductive iron oxides, α-Fe2O3, γ-Fe2O3, α-FeOOH, and γ-FeOOH were found to significantly enhance syntrophic methanogenesis by 76.39, 72.40, 37.33, and 32.64% through redirecting the dominant IET pathway from classical interspecies hydrogen transfer to robust direct interspecies electron transfer (DIET). Their alternative roles as electron shuttles potentially substituting for c-type cytochromes were conjectured to establish an electron transport matrix associated with conductive pili. Distinguished from the conventional electron conductor mechanism of conductive Fe3O4, semiconductive iron oxides facilitated DIET intrinsically through the capacitive Fe(III/II) redox cycles coupled with secondary mineralization. The growth of Aminobacterium, Sedimentibacter, and Methanothrix was enriched and the gene copy numbers of Geobacteraceae 16S ribosomal ribonucleic acid were selectively flourished by 2.0-∼4.5- fold to establish a favorable microflora for DIET pathway. Metabolic pathways of syntrophic acetogenesis from propionate/butyrate and CO2 reduction methanogenesis were correspondingly promoted. The above findings provide new insights into the underlying mechanism of iron minerals enhancing the DIET-oriented pathway and offer paradigms for redox-mediated energy harvesting biological wastewater treatment.


Asunto(s)
Hierro , Oxidación-Reducción , Anaerobiosis , Hierro/metabolismo , Transporte de Electrón , Metano/metabolismo , Compuestos Férricos
12.
Water Res ; 262: 122135, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067270

RESUMEN

Rapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these redox reactions. While effective, intensive aeration promotes flocculent iron removal, which results in iron oxide flocs that rapidly clog the filter. In this study, we operated two parallel full-scale sand filters at different aeration intensities to resolve the relative contribution of homogeneous, heterogeneous and biological iron removal pathways, and identify their operational controls. Our results show that mild aeration in the LOW filter (5 mg/L O2, pH 6.9) promoted biological iron removal and enabled iron oxidation at twice the rate compared to the intensively aerated HIGH filter (>10 mg/L O2, pH 7.4). Microscopy images showed distinctive twisted stalk-like iron solids, the biosignatures of Gallionella ferruginea, both in the LOW filter sand coatings as well as in its backwash solids. In accordance, 10 times higher DNA copy numbers of G. ferruginea were found in the LOW filter effluent. Clogging by biogenic iron solids was slower than by chemical iron flocs, resulting in lower backwash frequencies and yielding four times more water per run. Ultimately, our results reveal that biological iron oxidation can be actively controlled and favoured over competing physico-chemical routes. The production of more compact and practically valuable iron oxide solids is of outmost interest. We conclude that, although counterintuitive, slowing down iron oxidation in the water before filtration enables rapid iron removal in the biofilter.


Asunto(s)
Filtración , Agua Subterránea , Hierro , Purificación del Agua , Agua Subterránea/química , Hierro/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua , Gallionellaceae , Oxidación-Reducción
13.
Biomimetics (Basel) ; 9(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39056828

RESUMEN

The skeletons of marine sponges are ancient biocomposite structures in which mineral phases are formed on 3D organic matrices. In addition to calcium- and silicate-containing biominerals, iron ions play an active role in skeleton formation in some species of bath sponges in the marine environment, which is a result of the biocorrosion of the metal structures on which these sponges settle. The interaction between iron ions and biopolymer spongin has motivated the development of selected extreme biomimetics approaches with the aim of creating new functional composites to use in environmental remediation and as adsorbents for heavy metals. In this study, for the first time, microporous 3D spongin scaffolds isolated from the cultivated marine bath sponge Hippospongia communis were used for electro-assisted deposition of iron oxides such as goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)]. The obtained iron oxide phases were characterized with the use of scanning electron microscopy, FTIR, and X-ray diffraction. In addition, mechanisms of electro-assisted deposition of iron oxides on the surface of spongin, as a sustainable biomaterial, are proposed and discussed.

14.
Small ; 20(37): e2401970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770987

RESUMEN

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

15.
J Hazard Mater ; 472: 134433, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718503

RESUMEN

The surface passivation layer coating on zero-valent iron (ZVI) particles impedes the electron transfer from ZVI to nitrate. To enhance the efficiency of nitrate reduction by Fe(0), we tested the chemical process and the thickness of the iron oxide film on the surface of Fe(0) particles, utilizing Fe2+aq in aqueous solution and wheat straw as ligands. A novel principal surface catalyzing reaction was formulated as follows: [Formula: see text] . When Fe2+aq concentration increased from 0 - 200 mg·L-1, the NO3- removal rate increased from 6.95% to 82.6% respectively during 12 h and it was 48%, 72%, 79% and 94% respectively in Fe0/WS ratio of 0, 0.25, 0.5 and 1 system. Uniform surface iron oxide films formed around the Fe(0) particles within 12 h after the adding Fe2+aq or wheat straw to the Fe(0) system. The composition and thickness of these films were dependent on the quantity of added materials. X-ray diffraction (XRD) analysis revealed that surface oxide iron mainly consisted of Fe2+ or Fe3+ oxides, with Fe3O4 being predominant. The X-ray photoelectron spectroscopy (XPS) etching indicated that the addition of Fe(0)/straw at mass ratios of 1 or system with 20 mg·L-1 Fe2+aq resulted in the thinnest surface iron oxide layer. The study demonstrated that reducing the oxide layer's thickness was achieved through partial catalysis and enhanced complexation capacity. This reduction was facilitated by the introduction of Fe2+aq or wheat straw into the Fe(0) system, potentially improving proton dissociation and promoting the ligand-assisted dissolution of Fe3+ oxides.

16.
ACS Appl Bio Mater ; 7(6): 3942-3952, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38740514

RESUMEN

Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material. The rSpA ligand contains a short peptide tag that enables the direct and stable immobilization onto the uncoated BION surface without commonly required laborious particle activation. The resulting BION@rSpA have beneficial characteristics outperforming conventional Protein A-functionalized magnetic particles: a simple, fast, low-cost synthesis, a particle size in the nanometer range with a large effective specific surface area enabling large immunoglobulin G (IgG) binding capacity, and a high magnetophoretic velocity advantageous for fast processing. We further show rapid interactions of IgG with the easily accessible rSpA ligands. The binding of IgG to BION@rSpA is thereby highly selective and not impeded by impurity molecules in perfusion cell culture supernatant. Regarding the subsequent acidic IgG elution from BION@rSpA@IgG, we observed a hampering pH increase caused by the protonation of large iron oxide surfaces after concentrating the particles in 100 mM sodium acetate buffer. However, the pH can be stabilized by adding 50 mM glycine to the elution buffer, resulting in recoveries above 85% even at high particle concentrations. Our work shows that BION@rSpA enable efficient magnetic mAb separation and could help to overcome emerging bottlenecks in DSP.


Asunto(s)
Inmunoglobulina G , Nanopartículas Magnéticas de Óxido de Hierro , Ensayo de Materiales , Tamaño de la Partícula , Nanopartículas Magnéticas de Óxido de Hierro/química , Ligandos , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Materiales Biocompatibles/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Propiedades de Superficie , Compuestos Férricos/química
17.
Sci Total Environ ; 935: 173443, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38782281

RESUMEN

Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.


Asunto(s)
Arsénico , Benzopiranos , Compuestos Férricos , Oxidación-Reducción , Shewanella , Compuestos Férricos/metabolismo , Compuestos Férricos/química , Arsénico/metabolismo , Shewanella/metabolismo , Hierro/química , Hierro/metabolismo
18.
Water Res ; 258: 121760, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795547

RESUMEN

The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in H2O2 and PDS systems but promoted in PMS-involved systems. The inactivation efficacy of all the proposed systems for mixed bacteria and viruses was greater than that of the sole bacteria, showing potential practical applications. The inactivation performance of humic acid-incorporated iron oxides mediating photo-Fenton-like processes was also studied; except for the PMS-involved system, the inactivation efficacy of the H2O2- and PDS-involved systems was inhibited, but the PDS-involved system was still acceptable (< 2 h). Reactive species exploration experiments indicated that ·OH was the main radical in the H2O2 and PDS systems, whereas 1O2 played a key role in the PMS-involved system. In summary, hematite- and magnetite-mediated persulfate-assisted photo-Fenton-like systems at low concentrations can be used as alternatives to the photo-Fenton process for virus inactivation in sunny areas, providing more possibilities for point-of-use drinking water treatment in developing countries.


Asunto(s)
Compuestos Férricos , Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Sulfatos/química , Peróxidos/química
19.
Water Res ; 258: 121802, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796914

RESUMEN

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Asunto(s)
Agua Subterránea , Metano , Oryza , Oxidación-Reducción , Metano/metabolismo , Agua Subterránea/química , Agua Subterránea/microbiología , Anaerobiosis , Archaea/genética , Archaea/metabolismo
20.
J Hazard Mater ; 473: 134636, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772111

RESUMEN

Nanoscale zero-valent iron (ZVI) and the oxides have been documented as an effective approach for mitigating the dissemination of antibiotic resistance genes (ARGs) during anaerobic digestion (AD). However, the mechanism of ARGs dissemination mitigated by nanoscale ZVI and iron oxides remain unclear. Here, we investigated the influencing mechanisms of nanoscale ZVI and iron oxides on ARGs dissemination during AD. qPCR results indicated that nanoscale ZVI and iron oxides significantly declined the total ARGs abundances, and the strongest inhibiting effect was observed by 10 g/L nanoscale ZVI. Mantel test showed ARGs distribution was positively correlated with physiochemical properties, integrons and microbial community, among which microbial community primarily contributed to ARGs dissemination (39.74%). Furthermore, redundancy and null model analyses suggested the dominant and potential ARGs host was Fastidiosipila, and homogeneous selection in the determinism factors was the largest factor for driving Fastidiosipila variation, confirming the inhibition of Fastidiosipila was primary reason for mitigating ARGs dissemination by nanoscale ZVI and iron oxides. These results were related to the inhibition of ARGs transfer related functions. This work provides novel evidence for mitigating ARGs dissemination through regulating microbial succession and regulation induced by ZVI and iron oxides.


Asunto(s)
Farmacorresistencia Microbiana , Compuestos Férricos , Hierro , Hierro/química , Hierro/metabolismo , Compuestos Férricos/química , Farmacorresistencia Microbiana/genética , Anaerobiosis , Microbiota/efectos de los fármacos , Genes Bacterianos/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...