Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Agric Food Chem ; 72(33): 18573-18584, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105709

RESUMEN

Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Semillas , Glycine max/genética , Glycine max/metabolismo , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/análisis , Semillas/genética , Semillas/química , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes
2.
J Agric Food Chem ; 72(33): 18465-18477, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39110140

RESUMEN

Legume plants form symbiotic relationships with rhizobia, which allow plants to utilize atmospheric nitrogen as a nutrient. This symbiosis is initiated by secretion of specific signaling metabolites from the roots, which induce the expression of nod genes in rhizobia. These metabolites are called nod gene inducers (NGIs), and various flavonoids have been found to act as NGIs. However, NGIs of chickpea, the second major pulse crop, remain elusive. We conducted untargeted metabolome analysis of chickpea root exudates to explore metabolites with increased secretion under nitrogen deficiency. Principal component (PC) analysis showed a clear difference between nitrogen deficiency and control, with PC1 alone accounting for 37.5% of the variance. The intensity of two features with the highest PC1 loading values significantly increased under nitrogen deficiency; two prominent peaks were identified as O-methylated isoflavones, pratensein and biochanin A. RNA-seq analysis showed that they induce nodABC gene expression in the Mesorhizobium ciceri symbiont, suggesting that pratensein and biochanin A are chickpea NGIs. Pratensein applied concurrently with M. ciceri at sowing promoted chickpea nodulation. These results demonstrate that pratensein and biochanin A are chickpea NGIs, and pratensein can be useful for increasing nodulation efficiency in chickpea production.


Asunto(s)
Cicer , Isoflavonas , Mesorhizobium , Nodulación de la Raíz de la Planta , Simbiosis , Cicer/microbiología , Cicer/genética , Cicer/metabolismo , Isoflavonas/metabolismo , Isoflavonas/farmacología , Mesorhizobium/genética , Mesorhizobium/metabolismo , Mesorhizobium/fisiología , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Metilación , Genisteína/metabolismo , Genisteína/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-39134513

RESUMEN

This study aimed to determine the anti-inflammatory activities and bioactive compounds of soymilk yogurt prepared using Lactiplantibacillus plantarum TOKAI 17 or Pediococcus pentosaceus TOKAI 759 m. Mice were divided into five groups: normal diet (ND), soymilk (SM), soymilk yogurt using L. plantarum TOKAI 17 (SY 17) or P. pentosaceus TOKAI 759 m (SY 759 m), and 0.5 × 109 cells of each starter strain (BC 17 or BC759m). In the SY 759 m group, the serum pro-inflammatory cytokine levels and the cytotoxicity of natural killer cells were attenuated compared to the ND group. In the cecum microbiota, the abundances of butyrate-producing bacteria increased in the SY 759 m and BC 17 groups. Furthermore, SY 759 m metabolites contained high levels of aglycone isoflavone, adenine and showed a significant decrease in CCL-2 and IL-6 production in LPS-induced macrophage. In conclusion, soymilk yogurt produced using P. pentosaceus TOKAI 759 m modulates the gut microbiota and can potentially prevent pro-inflammatory cytokine production.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124785, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39008929

RESUMEN

Measuring the chemical composition in soybeans is time-consuming and laborious, and even simple near-infrared sensors generally require the creation of calibration curves before application. In this study, a new screening method for soybeans without calibration curves was investigated by combining the excitation emission matrix (EEM) and dimensionality reduction analysis. The EEMs of 34 soybean samples were measured, and representative chemical contents including crude protein, crude oil and isoflavone contents were measured by chemical analysis. Two methods of dimensionality reduction: principal component analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) were applied on the EEM data to obtain two-dimensional plots, which were divided into two regions with large or small amount of each chemical components. To classify the large or small levels of each of the chemical composition, machine learning classification models were constructed on the two-dimensional plots after dimensionality reduction. As a result, the classification accuracy was higher in t-SNE than in the combinations of PC1 and PC2 from PCA. Furthermore, in t-SNE, the classification accuracy reached over 90% for all the chemical components. From these results, t-SNE dimensionality reduction on the soybean EEM has the potential for easy and accurate screening of soybeans especially based on isoflavone contents.

5.
Plant Sci ; 347: 112197, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019089

RESUMEN

Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.


Asunto(s)
Antioxidantes , Etilenos , Glycine max , Isoflavonas , Melatonina , Reguladores del Crecimiento de las Plantas , Glycine max/metabolismo , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Glycine max/genética , Melatonina/metabolismo , Isoflavonas/metabolismo , Isoflavonas/biosíntesis , Etilenos/metabolismo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/metabolismo
6.
PeerJ ; 12: e17325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832044

RESUMEN

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Asunto(s)
Flavonoides , Flores , Rhododendron , Rhododendron/metabolismo , Rhododendron/genética , Rhododendron/crecimiento & desarrollo , Flores/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Flavonoides/metabolismo , Flavonoides/análisis
7.
Int Ophthalmol ; 44(1): 287, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937293

RESUMEN

PURPOSE: Equol is metabolized by intestinal bacteria from soy isoflavones and is chemically similar to estrogen. Dietary habits, such as consumption of soy products, influence equol production. A relationship between glaucoma and estrogen has been identified; here, we investigated the relationship between equol production status and glaucoma in Japan. METHODS: We recruited 68 normal-tension glaucoma (NTG) patients (male to female ratio 26:42, average age 63.0 ± 7.6 years) and 31 controls (male to female ratio 13:18, average age 66.0 ± 6.3 years) from our hospital. All women included were postmenopausal. Urinary equol concentration was quantified with the ELISA method. MD was calculated based on the Humphrey visual field. The association between MD and equol was analyzed with Spearman's rank correlation coefficient. The Mann-Whitney U test was used to compare the equol-producing (> 1 µM) and non-producing (< 1 µM) subjects. We also investigated the association between equol and glaucoma with a logistic regression analysis. RESULTS: There was a significant association between equol and MD (r = 0.36, P < 0.01) in the NTG patients. Glaucoma, represented by MD, was significantly milder in the equol-producing subjects than the non-equol producing subjects (P = 0.03). A multivariate analysis revealed the independent contributions of equol, cpRNFLT, and IOP to MD (P = 0.03, P = 0.04, and P < 0.01, respectively). CONCLUSION: Our results suggest that equol, acting through estrogen receptor-mediated neuroprotective effects, might be involved in suppressing the progression of NTG. This result also adds to evidence that glaucoma may be influenced by lifestyle.


Asunto(s)
Equol , Presión Intraocular , Glaucoma de Baja Tensión , Humanos , Glaucoma de Baja Tensión/metabolismo , Glaucoma de Baja Tensión/fisiopatología , Femenino , Persona de Mediana Edad , Anciano , Masculino , Equol/metabolismo , Equol/biosíntesis , Presión Intraocular/fisiología , Campos Visuales/fisiología , Japón/epidemiología , Ensayo de Inmunoadsorción Enzimática
8.
Curr Res Food Sci ; 8: 100777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840809

RESUMEN

The novel ß-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-ß-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.

9.
Food Res Int ; 189: 114571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876583

RESUMEN

The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.


Asunto(s)
Digestión , Interacciones Hidrofóbicas e Hidrofílicas , Isoflavonas , Tamaño de la Partícula , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Isoflavonas/química , Glycine max/química , Antioxidantes/química , Manipulación de Alimentos/métodos , Calor
10.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892626

RESUMEN

In this study, we prepared fermented products of isoflavone-enriched soybean leaves (IESLs) and analyzed their nutrients, isoflavones, anti-obesity efficacy, and effects on gut microbiota. Fermented IESLs (FIESLs) were found to be rich in nutrients, especially lauric acid, oleic acid, and linoleic acid. In addition, the concentrations of most essential free amino acids were increased compared to those of IESLs. The contents of bioactive compounds, such as total phenolic, total flavonoid, daidzein, and genistein, significantly increased as well. In addition, FIESLs administration in a high-fat diet (HFD) animal model improved the final body weight, epididymal fat, total lipid, triglyceride, total cholesterol, blood glucose, and leptin levels, as well as reverting microbiota dysbiosis. In conclusion, these findings indicate that FIESLs have the potential to inhibit obesity caused by HFDs and serve as a modulator of gut microbiota, offering the prevention of diet-induced gut dysbiosis and metabolite diseases associated with obesity.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Fermentación , Microbioma Gastrointestinal , Glycine max , Isoflavonas , Ácido Láctico , Obesidad , Hojas de la Planta , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Isoflavonas/farmacología , Obesidad/metabolismo , Obesidad/microbiología , Masculino , Dieta Alta en Grasa/efectos adversos , Fármacos Antiobesidad/farmacología , Ácido Láctico/metabolismo , Ratones Endogámicos C57BL , Ratones , Disbiosis
11.
Curr Pharm Biotechnol ; 25(7): 807-824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38902930

RESUMEN

Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.


Asunto(s)
Genisteína , Nanopartículas , Genisteína/farmacología , Genisteína/uso terapéutico , Genisteína/química , Humanos , Animales , Nanopartículas/química , Nanotecnología/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico
12.
Phytother Res ; 38(8): 3935-3953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38831683

RESUMEN

Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.


Asunto(s)
Antioxidantes , Genisteína , Genisteína/farmacología , Genisteína/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/química
13.
BMC Public Health ; 24(1): 1362, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773414

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS: In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS: At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS: This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION: The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .


Asunto(s)
Suplementos Dietéticos , Isoflavonas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Isoflavonas/farmacología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Glycine max/química
14.
ISME Commun ; 4(1): ycae052, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38707841

RESUMEN

Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume-microbiota interactions.

15.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613016

RESUMEN

Dietary soy protein and soy isoflavones have anti-inflammatory properties. Previously, we reported that feeding soy protein concentrate diet (SPC) with low or high isoflavone (LIF or HIF) to young (seven-week-old) obese (fa/fa) Zucker rats inhibits lipopolysaccharide (LPS) translocation and decreases liver inflammation compared to a casein control (CAS) diet. The current study investigated whether SPC-LIF and SPC-HIF diets would reduce liver inflammation in adult obese Zucker rats fed a CAS diet. A total of 21 six-week-old male obese (fa/fa) Zucker rats were given CAS diet for 8 weeks to develop obesity then randomly assigned to CAS, SPC-LIF, or SPC-HIF (seven rats/group) diet for an additional 10 weeks. The expression of LPS-translocation, inflammation, and intestinal permeability markers were quantified by qPCR in liver, visceral adipose tissue (VAT), and colon. LPS concentration was determined in both the colon content and fecal samples by a Limulus amebocyte lysate (LAL) test. SPC-LIF and SPC-HIF diets significantly decreased liver LPS-binding protein (LBP) expression compared to CAS diet (p < 0.01 and p < 0.05, respectively). SPC-HIF diet also significantly decreased liver MCP-1 and TNF-α expression (p < 0.05) and had a trend to decrease liver iNOS expression (p = 0.06). In the colon, SPC-HIF diet significantly increased LBP expression compared to CAS diet (p < 0.05). When samples from all three groups were combined, there was a negative correlation between colon LBP expression and liver LBP expression (p = 0.046). SPC diets did not alter the expression of intestinal permeability markers (i.e., occludin, claudin 3, and zonula occludens-1) in the colon or inflammation markers (i.e., TNF-α and iNOS) in VAT or the colon. LPS levels in the colon content did not differ between any groups. Fecal LPS levels were significantly higher in the SPC-LIF and SPC-HIF groups compared to the CAS group (p < 0.01). In conclusion, SPC, particularly SPC with HIF, reduces liver LBP expression and inflammation makers (i.e., TNF-α and MCP-1 expression) in adult obese Zucker rats, likely by reducing LPS translocation.


Asunto(s)
Proteínas de Fase Aguda , Proteínas Portadoras , Hepatitis , Lipopolisacáridos , Glicoproteínas de Membrana , Masculino , Animales , Ratas , Ratas Zucker , Proteínas de Soja/farmacología , Factor de Necrosis Tumoral alfa , Obesidad , Inflamación , Dieta Reductora , Colon
16.
Biomed Rep ; 20(5): 80, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590945

RESUMEN

Polycystic ovary syndrome (PCOS), a hormonal and metabolic disorder manifested in women of reproductive age, is still being treated using drugs with side effects. As an alternative to these drugs, isoflavone, also identified as phytoestrogen, has anti-PCOS activity. Isoflavone can help relieve PCOS symptoms by lowering the level of testosterone, which causes hyperandrogenism, thereby normalizing the menstrual cycle and restoring normal ovarian morphology. Furthermore, isoflavone influences the improvement of the metabolic profile, which changes because of PCOS, as well as the reduction of inflammatory markers and oxidative stress. However, both significant and non-significant results have been generated on the activity of isoflavones in PCOS. The present review aims to discuss the existing literature on the effect of isoflavone on PCOS symptoms based on in vivo and clinical trial studies.

17.
J Agric Food Chem ; 72(18): 10247-10256, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683760

RESUMEN

Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.


Asunto(s)
Fitoestrógenos , Trifolium , Trifolium/metabolismo , Trifolium/química , Trifolium/crecimiento & desarrollo , Fitoestrógenos/metabolismo , Fitoestrógenos/análisis , Agua/metabolismo , Agua/análisis , Isoflavonas/metabolismo , Isoflavonas/análisis , Sequías , Genisteína/análisis , Genisteína/metabolismo
18.
Plant Physiol Biochem ; 210: 108667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678946

RESUMEN

This study aims to investigate the quality changes of germinated soybeans during refrigerated storage (4 °C), with an emphasis on the stimulatory effect of refrigeration on their special functional compounds. After germinating for two days, germinated soybeans were stored at 4 °C for seven days, while the germinated soybeans stored at 25 °C served as control group. The results showed that refrigerated storage significantly affected the physiological changes in germinated soybeans. The weight loss rate, browning rate, malondialdehyde (MDA) content and H2O2 content all decreased dramatically during refrigerated storage compared to the control group. The total phenolic and total flavonoid contents of germinated soybeans under refrigeration exhibited a trend of increasing and then decreasing over time. Additionally, during refrigerated storage, the total isoflavone content reached a peak of 8.72 g/kg on the fifth day, in which the content of daidzein and glycitin increased by 45% and 49% respectively, when compared with the control group. Moreover, the content of γ-aminobutyric acid (GABA) peaked on the first day, and kept a high level during storage. In which, the refrigerated group was 2.35-, 2.88-, 1.67-fold respectively after storage for three to seven days. These results indicated that refrigeration stimulated the biosynthesis of isoflavones and GABA in germinated soybeans during storage. More importantly, there was a sequential difference in the timing of the stimulation of the two functional components under refrigeration.


Asunto(s)
Almacenamiento de Alimentos , Germinación , Glycine max , Isoflavonas , Refrigeración , Ácido gamma-Aminobutírico , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Isoflavonas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Almacenamiento de Alimentos/métodos , Malondialdehído/metabolismo , Peróxido de Hidrógeno/metabolismo
19.
Plant Physiol Biochem ; 210: 108669, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685150

RESUMEN

Chitosan is an environmentally friendly natural substance that is used in crop disease management as an alternative to chemical pesticides. A significant issue restricting output in Egypt is root rot, which is a disease, caused by Rhizoctonia solani. Therefore, a greenhouse experiment was conducted to assess the effects of R. solani on 60-day-old tomato plants under fungal infection and to determine the antifungal activity of chitosan and Rizolax T fungicide against the pathogenic fungus. The findings demonstrated that 4 g/L of chitosan seed application completely obstructed the radial mycelial growth of R. solani and decreased the disease severity. Pathogenic infection significantly decreased morphological characteristics and total chlorophyll but significantly increased carotenoid, total thiol, non-protein thiol, protein thiol, antioxidant enzymes, oxidative stress, total phenolic, total flavonoid, and isoflavone compared to healthy plants. Tomato plants treated with chitosan exhibited lower rates of oxidative stress, but higher levels of all previously mentioned parameters compared to untreated infected plants. The number and molecular mass of protein banding patterns varied in all treated tomato plants as compared to the healthy control. There are 42 bands in the treatments, and their polymorphism rate is 69.55%. Moreover, the number and density of α- and ß-esterase, and peroxidase isozymes in treated tomato plants exhibited varied responses. Moreover, in treated and control plants, chitosan treatment raised the expression levels of phenylalanine ammonia-lyase, pathogenesis-related protein-1, ß-1,3-glucanases and chitinase. In conclusions, chitosan reduces R. solani infection by controlling the biochemical and molecular mechanisms in tomato plants during infection.


Asunto(s)
Quitosano , Fungicidas Industriales , Enfermedades de las Plantas , Rhizoctonia , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fungicidas Industriales/farmacología , Quitosano/farmacología , Rhizoctonia/efectos de los fármacos , Rhizoctonia/patogenicidad , Rhizoctonia/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Clorofila/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo
20.
Biomed Pharmacother ; 175: 116612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663102

RESUMEN

Drosophila melanogaster, or the fruit fly, is widely used for modeling numerous human diseases, such as neurodegeneration, tumor development, cachexia, and intestinal dysfunction. It is a suitable model organism for research targeting the physiology and pathophysiology of the intestinal epithelial barrier and has also been used as a model organism for preliminary drug and bioactive nutrient screening. However, the application of D. melanogaster in research on drug bioavailability and pharmacokinetic properties has not yet been well explored. In this study, we applied D. melanogaster to investigate the absorption and excretion of the orally administered phytoestrogens daidzein, glycitein, genistein, and their glycosides. Therefore, we established a quick, noninvasive method to quantify compound retention in D. melanogaster, suitable for the investigation of a broad variety of potentially bioactive substances. We showed that fruit fly sex plays a key role in the metabolization, transportation, and excretion of phytoestrogenic isoflavones. In particular, female fruit flies retained significantly more isoflavones than male fruit flies, which was reflected in the greater metabolic impact of isoflavones on females. Male fruit flies excreted more isoflavones than females did, which was linked to the upregulation of the xenobiotic transporter gene Mdr50. We also demonstrated that micellized isoflavones were more bioavailable than powdered isoflavones, independent of sex, age or the addition of dietary fibers.


Asunto(s)
Disponibilidad Biológica , Drosophila melanogaster , Isoflavonas , Fitoestrógenos , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Fitoestrógenos/farmacocinética , Fitoestrógenos/farmacología , Masculino , Femenino , Isoflavonas/farmacocinética , Isoflavonas/farmacología , Caracteres Sexuales , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...