Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 179: 105824, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098765

RESUMEN

N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets. We previously reported non-conventional intracellular signaling triggered by which, upon activation, promotes the interaction between JNK2 and STX1A which enhances the rate of vesicular secretion. We developed a cell-permeable peptide, named JGRi1, able to disrupt such interaction, thus reducing vesicular secretion. In this work, to selectively study the effect of JGRi1 in a much simpler system, we employed neuroblastoma cells, SH-SY5Y. We found that SH-SY5Y cells express the components of the NMDA receptor-JNK2 axis and that the NMDA stimulus increases the rate of vesicle release. Both JGRi1 and memantine protected SH-SY5Y cells from NMDA toxicity, but only JGRi1 reduced the interaction between JNK2 and STX1A. Both drugs successfully reduced NMDA-induced vesicle release, although, unlike memantine, JGRi1 did not prevent calcium influx. NMDA treatment induced JNK2 expression, but not JNK1 or JNK3, which was prevented by both JGRi1 and memantine, suggesting that JNK2 may be specifically involved in the response to NMDA. In conclusion, being JGRi1 able to protect cells against NMDA toxicity by interfering with JNK2/STX1A interaction, it could be considered a novel pharmacological tool to counteract excitotoxicity.

2.
Front Mol Biosci ; 11: 1402354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855323

RESUMEN

Ephrin type-A receptor 2 (EPHA2) is a receptor tyrosine kinase that is overexpressed in a variety of cancers, including breast cancer. EPHA2 expression may be causally related to tumorigenesis; therefore, it is important to understand how EPHA2 expression is regulated. We previously reported that EPHA2 antisense RNA (EPHA2-AS), a natural antisense transcript, is an important modulator of EPHA2 mRNA levels and hence production of EPHA2 protein. EPHA2-AS encodes two splice variants, EPHA2-AS1 and EPHA2-AS2. The two variants are constitutively expressed in a concordant manner with EPHA2 mRNA in human breast adenocarcinoma cell lines and in patient samples, with the highest levels detected in the basal-like/triple-negative molecular subtype of breast cancer cells. In this study, we investigated the mechanism of EPHA2-AS1/2 in triple-negative breast cancer using MDA-MB-231 cells. We performed RNA-seq transcriptome analyses of MDA-MB-231 cells treated with AHCC®, which suppressed expression of EPHA2-AS1/2 and EPHA2 mRNA, and EPHA2-AS1/2-silenced MDA-MB-231 cells. Bioinformatics analyses identified 545 overlapping differentially expressed genes that were significantly up- or down-regulated by these treatments. Subsequent functional enrichment analyses of the overlapping genes in combination with in vitro assays indicated that EPHA2-AS1/2 may promote the proliferation and migration of MDA-MB-231 cells through the EPHA2-dependent Ras signaling pathways mediated by MAPK8/JNK1, MAPK9/JNK2-NFATC2/NFAT1 (proliferation and migration) and JUND (migration). These results thus suggest that EPHA2-AS1/2 may represent a potential molecular target for triple-negative breast cancer treatment.

3.
Bioorg Med Chem Lett ; 102: 129673, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408511

RESUMEN

The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC50) values of 2.7-63 µM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC50 of 2.0 and 0.9 µM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC50 = 1.7 µM). Notably, 6c inhibited both kinases, with IC50 values of 2.7 and 3.0 µM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas/química , Receptores ErbB , Proliferación Celular , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Diseño de Fármacos
4.
Curr Pharm Des ; 29(37): 2977-2987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37957865

RESUMEN

INTRODUCTION: The dysregulation of the c-Jun NH2-terminal kinase (JNK) pathway has been increasingly reported in human malignancies. Aberrant expression of the JNK pathway has also been implicated in the progression of Esophageal Squamous Cell Carcinoma (ESCC). However, the specific role and regulatory mechanisms of JNK2 in ESCC have not been extensively investigated. METHODS: In this study, we examined JNK2 expression in patient samples and performed experiments involving the knockdown and inhibition of the JNK2 in ESCC cell lines. RESULTS: Higher JNK2 expression was observed in tumor tissues compared to adjacent tissues. JNK2 overexpression was associated with advanced disease stages and poor prognosis. Furthermore, knockdown or inhibition of JNK2 in ESCC cell lines resulted in a decrease in cell proliferation and migration. CONCLUSION: Additionally, a significant decrease in the expression of ß-catenin and vimentin, along with an increase in the expression of Axin2, was observed upon downregulation of JNK2. Our study provides insight into the role of JNK2 in ESCC and its potential regulatory mechanism, offering a potential therapeutic strategy for ESCC patients with aberrant JNK2 expression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2
5.
Molecules ; 28(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764297

RESUMEN

New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds A and B) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds 7a-j, 8a-j, 9a-c, and 10a-c. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c. Compounds 8d, 8g, 8i, and 10c inhibited EGFR with IC50 values ranging from 8 to 21 µM when compared with sorafenib. Compound 8i inhibited JNK-2 as effectively as sorafenib, with an IC50 of 1.0 µM. Furthermore, compound 8g showed cell cycle arrest at the G2/M phase in the cell cycle analysis of the Hela cell line, whereas compound 8i showed combined S phase and G2 phase arrest. According to docking studies, oxime hybrid compounds 8d, 8g, 8i, and 10c exhibited binding free energies ranging from -12.98 to 32.30 kcal/mol at the EGFR binding site whereas compounds 8d and 8i had binding free energies ranging from -9.16 to -12.00 kcal/mol at the JNK-2 binding site.


Asunto(s)
Antineoplásicos , Oximas , Humanos , Simulación del Acoplamiento Molecular , Sorafenib/farmacología , Relación Estructura-Actividad , Células HeLa , Oximas/química , Línea Celular Tumoral , Antineoplásicos/química , Receptores ErbB/metabolismo , Proliferación Celular , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas
6.
Cells ; 12(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37759456

RESUMEN

Long-term alcohol consumption leads to cardiac arrhythmias including atrial fibrillation (AF), the most common alcohol-related arrhythmia. While AF significantly increases morbidity and mortality in patients, it takes years for an alcoholic individual undergoing an adaptive status with normal cardiac function to reach alcoholic cardiomyopathy. The underlying mechanism remains unclear to date. In this study, we assessed the functional role of JNK2 in long-term alcohol-evoked atrial arrhythmogenicity but preserved cardiac function. Wild-type (WT) mice and cardiac-specific JNK2dn mice (with an overexpression of inactive dominant negative (dn) JNK2) were treated with alcohol (2 g/kg daily for 2 months; 2 Mo). Confocal Ca2+ imaging in the intact mouse hearts showed that long-term alcohol prolonged intracellular Ca2+ transient decay, and increased pacing-induced Ca2+ waves, compared to that of sham controls, while cardiac-specific JNK2 inhibition in JNK2dn mice precluded alcohol-evoked Ca2+-triggered activities. Moreover, activated JNK2 enhances diastolic SR Ca2+ leak in 24 h and 48 h alcohol-exposed HL-1 atrial myocytes as well as HEK-RyR2 cells (inducible expression of human RyR2) with the overexpression of tGFP-tagged active JNK2-tGFP or inactive JNK2dn-tGFP. Meanwhile, the SR Ca2+ load and systolic Ca2+ transient amplitude were both increased in ventricular myocytes, along with the preserved cardiac function in 2 Mo alcohol-exposed mice. Moreover, the role of activated JNK2 in SR Ca2+ overload and enhanced transient amplitude was also confirmed in long-term alcohol-exposed HL-1 atrial myocytes. In conclusion, our findings suggest that long-term alcohol-activated JNK2 is a key driver in preserved cardiac function, but at the expense of enhanced cardiac arrhythmogenicity. Modulating JNK2 activity could be a novel anti-arrhythmia therapeutic strategy.


Asunto(s)
Fibrilación Atrial , Humanos , Animales , Ratones , Canal Liberador de Calcio Receptor de Rianodina , Etanol/efectos adversos , Miocitos Cardíacos , Proteínas Quinasas JNK Activadas por Mitógenos , Isoformas de Proteínas
7.
Front Pharmacol ; 13: 881042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979232

RESUMEN

Excessive solar ultraviolet (SUV) radiation often causes dermatitis, photoaging, and even skin cancer. In the pathological processes of SUV-induced sunburn, JNK is activated by phosphorylation, and it in turn phosphorylates its downstream transcription factors, such as ATF2 and c-jun. The transcription factors further regulate the expression of pro-inflammatory genes, such as IL-6 and TNF-α, which ultimately leads to dermatitis. Therefore, inhibiting JNK may be a strategy to prevent dermatitis. In this study, we screened for worenine as a potential drug candidate for inhibiting sunburn. We determined that worenine inhibited the JNK-ATF2/c-jun signaling pathway and the secretion of IL-6 and TNF-α in cell culture and in vivo, confirming the role of worenine in inhibiting sunburn. Furthermore, we determined that worenine bound and inhibited JNK2 activity in vitro through the MST, kinase, and in vitro kinase assays. Therefore, worenine might be a promising drug candidate for the prevention and treatment of SUV-induced sunburn.

8.
BMC Cancer ; 22(1): 799, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35854245

RESUMEN

OBJECTIVE: Head and neck squamous cell carcinoma (HNSCC) is one severe malignancy driven by complex cellular and signaling mechanisms. However, the roles of circular RNAs (circRNAs) in HNSCC's development remains poorly understood. Therefore, this study investigated the functions of differentially expressed circRNAs in regulating HNSCC cell functions. METHODS: Differentially expressed circRNAs were characterized through RNA sequencing in HNSCC tissues. CircRNA's identity was then confirmed using RT-PCR and Sanger's sequencing. Next, expression levels of circRNA and mRNA were detected by qRT-PCR, after which protein abundances were measured by Western blotting. Subsequently, the proliferation, migration, and invasion of HNSCC cells was assessed by MTS, wound healing, and Transwell system, respectively, followed by identification of circRNA-binding proteins in HNSCC cells by circRNA pull-down, coupled with mass spectrometry. RESULTS: Great alterations in circRNA profiles were detected in HNSCC tissues, including the elevated expression of circ_0000045. As observed, silencing of circ_0000045 effectively repressed the proliferation, migration, and invasion of HNSCC cell lines (FaDu and SCC-9). Contrarily, circ_0000045's overexpression promoted the proliferation, migration, and invasion in FaDu and SCC-9 cells. Results also showed that circ_0000045 was associated with multiple RNA-binding proteins in HNSCC cells, such as HSP70. Moreover, circ_0000045 knockdown enhanced HSP70 expression and inhibited JNK2 and P38's expression in HNSCC cells, which were oppositely regulated by circ_0000045's overexpression. CONCLUSION: The high expression of circ_0000045; therefore, promoted cell proliferation, migration, and invasion during HNSCC's development through regulating HSP70 protein and mitogen-activated protein kinase signaling.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias de Cabeza y Cuello/genética , Humanos , MicroARNs/genética , ARN Circular/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
9.
Front Immunol ; 12: 700933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899681

RESUMEN

Sepsis and acute lung injury (ALI) are linked to mitochondrial dysfunction; however, the underlying mechanism remains elusive. We previously reported that c-Jun N-terminal protein kinase 2 (JNK2) promotes stress-induced mitophagy by targeting small mitochondrial alternative reading frame (smARF) for ubiquitin-mediated proteasomal degradation, thereby preventing mitochondrial dysfunction and restraining inflammasome activation. Here we report that loss of JNK2 exacerbates lung inflammation and injury during sepsis and ALI in mice. JNK2 is downregulated in mice with endotoxic shock or ALI, concomitantly correlated inversely with disease severity. Small RNA sequencing revealed that miR-221-5p, which contains seed sequence matching to JNK2 mRNA 3' untranslated region (3'UTR), is upregulated in response to lipopolysaccharide, with dynamically inverse correlation with JNK2 mRNA levels. miR-221-5p targets the 3'UTR of JNK2 mRNA leading to its downregulation. Accordingly, miR-221-5p exacerbates lung inflammation and injury during sepsis in mice by targeting JNK2. Importantly, in patients with pneumonia in medical intensive care unit, JNK2 mRNA levels in alveolar macrophages flow sorted from non-bronchoscopic broncholaveolar lavage (BAL) fluid were inversely correlated strongly and significantly with the percentage of neutrophils, neutrophil and white blood cell counts in BAL fluid. Our data suggest that miR-221-5p targets JNK2 and thereby aggravates lung inflammation and injury during sepsis.


Asunto(s)
Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Sepsis/complicaciones
10.
Pharmacol Res ; 164: 105375, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33316384

RESUMEN

Excessive binge alcohol intake is a common drinking pattern in humans, especially during holidays. Cessation of the binge drinking often leads to aberrant withdrawal behaviors, as well as serious heart rhythm abnormalities (clinically diagnosed as Holiday Heart Syndrome (HHS)). In our HHS mouse model with well-characterized binge alcohol withdrawal (BAW)-induced heart phenotypes, BAW leads to anxiety-like behaviors and cognitive impairment. We have previously reported that stress-activated c-Jun NH(2)-terminal kinase (JNK) plays a causal role in BAW-induced heart phenotypes. In the HHS brain, we found that activation of JNK2 (but not JNK1 and JNK3) in the prefrontal cortex (PFC), but not hippocampus and amygdala, led to anxiety-like behaviors and impaired cognition. DNA methylation mediated by a crucial DNA methylation enzyme, DNA methyltransferase1 (DNMT1), is known to be critical in alcohol-associated behavioral deficits. In HHS mice, JNK2 in the PFC (but not hippocampus and amygdala) causally enhanced total genomic DNA methylation via increased DNMT1 expression, which was regulated by enhanced binding of JNK downstream transcriptional factor c-JUN to the DNMT1 promoter. JNK2-specific inhibition either by an inhibitor JNK2I or JNK2 knockout completely offset c-JUN-regulated DNMT1 upregulation and restored the level of DNA methylation in HHS PFC to the baseline levels seen in sham controls. Strikingly, either JNK2-specific inhibition or genetic JNK2 depletion or DNMT1 inhibition (by an inhibitor 5-Azacytidine) completely abolished BAW-evoked behavioral deficits. In conclusion, our studies revealed a novel mechanism by which JNK2 drives BAW-evoked behavioral deficits through a DNMT1-regulated DNA hypermethylation. JNK2 could be a novel therapeutic target for alcohol withdrawal treatment and/or prevention.


Asunto(s)
Conducta Animal , Consumo Excesivo de Bebidas Alcohólicas , Metilación de ADN , Proteína Quinasa 9 Activada por Mitógenos , Síndrome de Abstinencia a Sustancias , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/enzimología , Ansiedad/genética , Consumo Excesivo de Bebidas Alcohólicas/enzimología , Consumo Excesivo de Bebidas Alcohólicas/genética , Cognición , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/genética , Corteza Prefrontal/metabolismo , Síndrome de Abstinencia a Sustancias/enzimología , Síndrome de Abstinencia a Sustancias/genética
11.
Chin J Nat Med ; 18(7): 491-499, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32616189

RESUMEN

Adriamycin resistance in HCC seriously hinders the treatment of patients, it is necessary to investigate the mechanisms. Autophagy is involved in adriamycin resistance and JNK2 is related to autophagy. However, whether JNK2 inducing drug resistance though autophagy is unknown. GL-V9, a new synthesized flavonoid derivative, has been proved of its anti-tumor effects. The aim of the study is to explore the role of JNK2-related autophagy on adriamycin-induced drug resistance and the effects of GL-V9 on reversing adriamycin resistance. We concluded that JNK2 played an important role in drug resistance induced by adriamycin. The high expression of JNK2 activated protective autophagy in Hep G2-DOXR cells under non-stress condition, which protected cells from drug attacking. Furthermore, we found that GL-V9 reversed adriamycin resistance by blocking the JNK2-related protective autophagy in HCC.


Asunto(s)
Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/farmacología , Flavonoides/farmacología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Resistencia a Medicamentos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Células MCF-7
12.
J Cell Physiol ; 235(11): 8446-8460, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324277

RESUMEN

ß-Mangostin is a natural mangostin with potent anticancer activity against various cancers. In this study, we further explored the anticancer activity of ß-mangostin on cervical cancer cells. ß-Mangostin did not affect cell viability and cell cycle distribution in HeLa and SiHa cells; however, it dose-dependently inhibited the migration and invasion of both the human cervical cancer cell lines. In addition, we observed that ß-mangostin suppressed the expression of integrin αV and ß3 and the downstream focal adhesion kinase/Src signaling. We also found that Snail was involved in the ß-mangostin inhibited cell migration and invasion of HeLa cell. Then, our findings showed that ß-mangostin reduced both nuclear translocation and messenger RNA expression of AP-1 and demonstrated that AP-1 could target to the Snail promoter and induce Snail expression. Kinase cascade analysis and reporter assay showed that JNK2 was involved in the inhibition of AP-1/Snail axis by ß-mangostin in HeLa cells. These results indicate that ß-mangostin can inhibit the mobility and invasiveness of cervical cancer cells, which may attribute to the suppression of both integrin/Src signaling and JNK2-mediated AP-1/Snail axis. This suggests that ß-mangostin has potential antimetastatic potential against cervical cancer cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Transcripción AP-1/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Xantonas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Células HeLa , Humanos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Neoplasias del Cuello Uterino/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-32117051

RESUMEN

Extracellular matrix mineralization is critical for osteogenesis, and its dysregulation could result in osteoporosis and vascular calcification. IKK/NF-κB activation inhibits differentiation of osteoblasts, and reduces extracellular matrix mineralization, however the underlying mechanisms are poorly understood. In this study, we used CRISPR/Cas9 system to permanently inactivate IKKß in preosteoblast cells and confirmed that such cells displayed dramatic increase in extracellular matrix mineralization associated with JNK phosphorylation. Such observation was also found in our study using IKKß-deficient primary murine osteoblasts. Interestingly, we found that in Ikbkb-/-Mapk8-/- or Ikbkb-/-Mapk9-/- double knockout cells, the enhanced mineralization caused by IKKß deficiency was completely abolished, and deletion of either Mapk8 or Mapk9 was sufficient to dampen c-Jun phosphorylation. In further experiments, we discovered that absence of JNK1 or JNK2 on IKKß-deficient background resulted in highly conserved transcriptomic alteration in response to osteogenic induction. Therefore, identification of the indispensable roles of JNK1 and JNK2 in activating c-Jun and promoting osteoblast differentiation on IKKß-deficient background provided novel insights into restoring homeostasis in extracellular matrix mineralization.


Asunto(s)
Calcificación Fisiológica/genética , Matriz Extracelular/metabolismo , Quinasa I-kappa B/genética , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Osteoblastos/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Matriz Extracelular/genética , Técnicas de Inactivación de Genes , Quinasa I-kappa B/deficiencia , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , Osteoblastos/fisiología , Osteogénesis/genética , Fosforilación/genética , Transducción de Señal/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-31130919

RESUMEN

PARP-14 (poly-ADP Ribose Polymerase-14), a member of the PARP family, belongs to the group of Bal proteins (B Aggressive Lymphoma). PARP-14 has recently appeared to be involved in the transduction pathway mediated by JNKs (c Jun N terminal Kinases), among which JNK2 promotes cancer cell survival. Several pharmacological PARP inhibitors are currently used as antitumor agents, even though they have also proved to be effective in many inflammatory diseases. Cytokine release from immune system cells characterizes many autoimmune inflammatory disorders, including type I diabetes, in which the inflammatory state causes ß cell loss. Nevertheless, growing evidence supports a concomitant implication of glucagon secreting α cells in type I diabetes progression. Here, we provide evidence on the activation of a survival pathway, mediated by PARP-14, in pancreatic α cells, following treatment of αTC1.6 glucagonoma and ßTC1 insulinoma cell lines with a cytokine cocktail: interleukin 1 beta (IL-1ß), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). Through qPCR, western blot and confocal analysis, we demonstrated higher expression levels of PARP-14 in αTC1.6 cells with respect to ßTC1 cells under inflammatory stimuli. By cytofluorimetric and caspase-3 assays, we showed the higher resistance of α cells compared to ß cells to apoptosis induced by cytokines. Furthermore, the ability of PJ-34 to modulate the expression of the proteins involved in the survival pathway suggests a protective role of PARP-14. These data shed light on a poorly characterized function of PARP-14 in αTC1.6 cells in inflammatory contexts, widening the potential pharmacological applications of PARP inhibitors.

15.
Cell Microbiol ; 21(3): e12973, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30412643

RESUMEN

Constitutive c-Jun N-terminal kinase (JNK) activity characterizes bovine T and B cells infected with Theileria parva, and B cells and macrophages infected with Theileria annulata. Here, we show that T. annulata infection of macrophages manipulates JNK activation by recruiting JNK2 and not JNK1 to the parasite surface, whereas JNK1 is found predominantly in the host cell nucleus. At the parasite's surface, JNK2 forms a complex with p104, a GPI-(GlycosylPhosphatidylInositol)-anchor T. annulata plasma membrane protein. Sequestration of JNK2 depended on Protein Kinase-A (PKA)-mediated phosphorylation of a JNK-binding motif common to T. parva and a cell penetrating peptide harbouring the conserved p104 JNK-binding motif competitively ablated binding, whereupon liberated JNK2 became ubiquitinated and degraded. Cytosolic sequestration of JNK2 suppressed small mitochondrial ARF-mediated autophagy, whereas it sustained nuclear JNK1 levels, c-Jun phosphorylation, and matrigel traversal. Therefore, T. annulata sequestration of JNK2 contributes to both survival and dissemination of Theileria-transformed macrophages.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Macrófagos/parasitología , Proteínas de la Membrana/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas Protozoarias/metabolismo , Theileria annulata/crecimiento & desarrollo , Animales , Macrófagos/inmunología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Teóricos , Unión Proteica , Theileria annulata/metabolismo , Theileriosis/parasitología , Theileriosis/patología
16.
J Cell Mol Med ; 22(12): 6314-6326, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30320490

RESUMEN

AIM: Diabetic cardiomyopathy is an independent cardiac injury that can develop in diabetic individuals. Our previous study showed that C66, a curcumin analogue, protects against diabetes-induced cardiac damage. The present study sought to reveal the underlying mechanisms of C66-mediated cardioprotection. METHODS: An experimental diabetic model was established using JNK2-/- and wild-type (WT) mice. C66 (5 mg/kg) was administered orally every other day for 3 months. Body weight, plasma glucose levels, cardiac function, and structure were measured. Masson trichrome and TUNEL staining were used to assess myocardial fibrosis and apoptosis, respectively. mRNA and protein levels of inflammation, fibrosis, oxidative stress, and apoptosis molecules were measured by quantitative PCR and Western blot, respectively. RESULTS: Neither C66 treatment nor JNK2 knockout affected body weight or plasma glucose levels. Cardiac inflammation, fibrosis, oxidative stress, and apoptosis were increased in WT diabetic compared to WT control mice, all of which were attenuated by C66 treatment. However, these pathological and molecular changes induced by diabetes were eliminated in JNK2-/- diabetic mice compared to JNK2-/- control mice, and C66 treatment did not further affect these parameters in JNK2-/- diabetic mice. CONCLUSIONS: Our results indicate that C66 ameliorates diabetic cardiomyopathy by inhibiting JNK2 relative pathways.


Asunto(s)
Curcumina/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Proteína Quinasa 9 Activada por Mitógenos/genética , Animales , Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Fibrosis/tratamiento farmacológico , Fibrosis/genética , Fibrosis/patología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos NOD , Estrés Oxidativo/efectos de los fármacos , Fosforilación
17.
Int J Nanomedicine ; 13: 5187-5205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233180

RESUMEN

BACKGROUND: A direct and independent role of inflammation in atherothrombosis was recently highlighted by the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) trial, showing the benefit of inhibiting signaling molecules, eg, interleukins. Accordingly, we sought to devise a flexible platform for preventing the inflammatory drivers at their source to preserve plaque endothelium and mitigate procoagulant risk. METHODS: p5RHH-siRNA nanoparticles were formulated through self-assembly processes. The therapeutic efficacy of p5RHH-JNK2 siRNA nanoparticles was evaluated both in vitro and in vivo. RESULTS: Because JNK2 is critical to macrophage uptake of oxidized lipids through scavenger receptors that engender expression of myriad inflammatory molecules, we designed an RNA-silencing approach based on peptide-siRNA nanoparticles (p5RHH-siRNA) that localize to atherosclerotic plaques exhibiting disrupted endothelial barriers to achieve control of JNK2 expression by macrophages. After seven doses of p5RHH-JNK2 siRNA nanoparticles over 3.5 weeks in ApoE-/- mice on a Western diet, both JNK2 mRNA and protein levels were significantly decreased by 26% (P=0.044) and 42% (P=0.042), respectively. Plaque-macrophage populations were markedly depleted and NFκB and STAT3-signaling pathways inhibited by 47% (P<0.001) and 46% (P=0.004), respectively. Endothelial barrier integrity was restored (2.6-fold reduced permeability to circulating 200 nm nanoparticles in vivo, P=0.003) and thrombotic risk attenuated (200% increased clotting times to carotid artery injury, P=0.02), despite blood-cholesterol levels persistently exceeding 1,000 mg/dL. No adaptive or innate immunoresponses toward the nanoparticles were observed, and blood tests after the completion of treatment confirmed the largely nontoxic nature of this approach. CONCLUSION: The ability to formulate these nanostructures rapidly and easily interchange or multiplex their oligonucleotide content represents a promising approach for controlling deleterious signaling events locally in advanced atherosclerosis.


Asunto(s)
Aterosclerosis/complicaciones , Endotelio/patología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Nanoestructuras/química , Péptidos/metabolismo , Placa Aterosclerótica/complicaciones , ARN Interferente Pequeño/metabolismo , Trombosis/complicaciones , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Aterosclerosis/patología , Aterosclerosis/terapia , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Nanopartículas/química , Placa Aterosclerótica/patología , Placa Aterosclerótica/terapia , Células RAW 264.7 , Interferencia de ARN , Factores de Riesgo , Transducción de Señal/efectos de los fármacos , Trombosis/patología , Trombosis/terapia
18.
Pulm Circ ; 8(3): 2045894018778156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29718758

RESUMEN

Pulmonary arterial (PA) wall modifications are key pathological features of pulmonary hypertension (PH). Although such abnormalities correlate with heightened phosphorylation of c-Jun N-terminal kinases 1/2 (JNK1/2) in a rat model of PH, the contribution of specific JNK isoforms to the pathophysiology of PH is unknown. Hence, we hypothesized that activation of either one, or both JNK isoforms regulates PA remodeling in PH. We detected increased JNK1/2 phosphorylation in the thickened vessels of PH patients' lungs compared to that in lungs of healthy individuals. JNK1/2 phosphorylation paralleled a marked reduction in MAP kinase phosphatase 1 (JNK dephosphorylator) expression in patients' lungs. Association of JNK1/2 activation with vascular modification was confirmed in the calf model of severe hypoxia-induced PH. To ascertain the role of each JNK isoform in pathophysiology of PH, wild-type (WT), JNK1 null (JNK1-/-), and JNK2 null (JNK2-/-) mice were exposed to chronic hypoxia (10% O2 for six weeks) to develop PH. In hypoxic WT lungs, an increase in JNK1/2 phosphorylation was associated with PH-like pathology. Hallmarks of PH pathophysiology, i.e. excessive accumulation of extracellular matrix and vessel muscularization with medial wall thickening, was also detected in hypoxic JNK1-/- lungs, but not in hypoxia-exposed JNK2-/- lungs. However, hypoxia-induced increases in right ventricular systolic pressure (RVSP) and in right ventricular hypertrophy (RVH) were similar in all three genotypes. Our findings suggest that JNK2 participates in PA remodeling (but likely not in vasoconstriction) in murine hypoxic PH and that modulating JNK2 actions might quell vascular abnormalities and limit the course of PH.

19.
Circ Res ; 122(6): 821-835, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29352041

RESUMEN

RATIONALE: Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE: To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS: We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS: We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.


Asunto(s)
Fibrilación Atrial/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Señalización del Calcio , Línea Celular , Células Cultivadas , Humanos , Masculino , Ratones , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
20.
Oncotarget ; 8(34): 56569-56581, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915613

RESUMEN

Fos-related antigen 1 (Fra1) has been proposed as a gatekeeper of the mesenchymal-epithelial transition to epithelial-mesenchymal transition. Here, we showed that de-phosphorylated JNK2 increased the expression of Fra1 by promoting the expression of c-Jun and Jun-B. Conversely, phosphorylated JNK2 suppressed its expression via enhancing the ubiquitination of c-Jun and Jun-B. These data provided insights into the regulatory mechanism of JNK2 on the expression of Fra1. Our study thus demonstrated that the conversion of JNK2 from its phosphorylation to de-phosphorylation status promoted the switch of breast cancer cells from mesenchymal-epithelial transition to epithelial-mesenchymal transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...