Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.166
Filtrar
1.
Talanta ; 281: 126898, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288587

RESUMEN

Molecularly imprinted polymer (MIP) is dedicated to the adsorption of target substances in the aqueous phase, but ignores the adsorption in a more complex environment (oily wastewater). In order to explore the application field of existing MIPs, acorn-like Janus particles were fabricated by photo-initiated seed swelling polymerization. A novel amphiphilic Janus-MIP was prepared with the acorn-like Janus particles as matrix, methacrylic acid, ethylene dimethacrylate and oxytetracycline (OTC) as functional monomers, crosslinking agents and template molecules via surface initiated-atom transfer radical polymerization (SI-ATRP). For comparison, the poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EDMA)) microspheres were also utilized as the matrix to prepare common spherical-MIP. The adsorption capacity of Janus-MIP for OTC was 23.8 mg g-1 in oil-water system, while the adsorption capacity of spherical-MIP for OTC was only 12.6 mg g-1 in the same system. At the same time, through high performance liquid chromatography (HPLC) analysis, Janus-MIP can specifically recognize and adsorb trace OTC in restaurant oily wastewater samples, and the proposed method exhibited a lower limit of detection (LOD, 3 ng mL-1) and a higher OTC recovery rate (94.2 %-98.4 %). This work demonstrated great potential for the detection and control of OTC contamination from real samples in an oil-water mixed environment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39297963

RESUMEN

The giant reduction of the barrier properties due to self-healing microcapsules and the lack of real-time protection during the healing remained the main challenges in self-healing anticorrosion coatings. Herein, a facile strategy using Janus graphene oxide (GO) as a dense and flexible shell has been proposed to synergistically solve these challenges. Benzotriazole (BTA) was used to synthesize Janus GO at the oil-water interface, and Janus GO/BTA/poly(methyl methacrylate) microcapsules were prepared. Energy-dispersive X-ray spectroscopy, Fourier infrared spectroscopy, Raman spectroscopy, and ultraviolet spectrophotometer analysis confirmed the formation of a Janus GO structure with one surface hydrophilic and the other hydrophobic. The surface morphology of J-GO-capsules with a high GO coverage rate was observed by scanning electron microscopy. The high biobased content coating containing J-GO-capsules showed a low-frequency impedance value above 1010 as assessed by electrochemical impedance spectroscopy after being immersed in 3.5 wt % NaCl solution for 60 days. In addition, the low-frequency impedance values of the coating were maintained after being scratched due to the self-healing properties of the J-GO-capsules as well as the real-time protective effect of the BTA. Biobased coatings with the best overall properties among all of the self-healing anticorrosion coatings were prepared.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39315932

RESUMEN

Uveitis remains one of the leading causes of blindness worldwide, with different etiologies requiring separate approaches to treatment. For over a decade, oral, topical, and local injection of corticosteroids as well as systemic conventional disease-modifying antirheumatic drugs (DMARDs) have remained the most effective treatment for noninfectious uveitis (NIU). Systemic administration of antitumor necrosis factor-α and other biological DMARDs have been used for treating cases that responded inadequately to conventional treatments. Unfortunately, some refractory patients still suffer from frequent attacks despite the combination of multiple treatments. Recently, there has been promising evidence for Janus kinase (JAK) inhibitors as the next-generation therapy for NIU. The JAK/signal transducers and activators of the transcription (STAT) signaling pathway mediate the downstream events involved in immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis by binding various ligands, such as cytokines, growth hormones, and growth factors. The mutation or loss of JAK/STAT components is implicated in autoimmune diseases, thus inhibition of such pathways has been an important area of research in therapeutic development.1 In this review, we provide a comprehensive overview of the efficacy and safety of JAK inhibitors for the management of NIU, with evidence from current trials and case reports.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39315994

RESUMEN

Chemo-biocatalytic cascades have emerged as a promising approach in the realm of advanced synthesis. However, reconciling the incompatible reaction conditions among distinct catalytic species presents a significant challenge. Herein, we introduce an innovative solution using an emulsion system stabilized by Janus silica nanoparticles, which serve as a bridge for both chemo-catalysts and biocatalysts at the interface. The chemo-catalyst is securely anchored within a hydrophobic polymer matrix, ensuring its residence in an organic environment. Meanwhile, the negatively charged E. coli cells containing enzymes are attracted to the aqueous phase at the interface, facilitating their optimal positioning. We demonstrate the efficacy of this system through a two-step cascade reaction. Initially, the oxidation of styrene to acetophenone using palladium as a chemocatalyst achieves a 6-fold increase in yield compared to the control system. Subsequently, the reduction of achiral acetophenone to its chiral alcohol derivative presents a 17-fold yield enhancement relative to that of the control reaction. Importantly, our system exhibits versatility, accommodating a wide range of substrates for both individual and sequential reactions. This work not only validates the concept but also paves the way for the integration of chemo- and biocatalysts in the synthesis of a broader array of high-value chemical compounds.

5.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229122

RESUMEN

Understanding the function of rotary molecular motors, such as the rotary ATPases, relies on our ability to visualize the single-molecule rotation. Traditional imaging methods often involve tagging those motors with nanoparticles (NPs) and inferring their rotation from translational motion of NPs. Here, we report an approach using "two-faced" Janus NPs to directly image the rotation of single V-ATPase from Enterococcus hirae, an ATP-driven rotary ion pump. By employing a 500-nm silica/gold Janus NP, we exploit its asymmetric optical contrast - silica core with a gold cap on one hemisphere - to achieve precise imaging of the unidirectional counter-clockwise rotation of single V-ATPase motors immobilized on surfaces. Despite the added viscous load from the relatively large Janus NP probe, our approach provides accurate torque measurements of single V-ATPase. This study underscores the advantages of Janus NPs over conventional probes, establishing them as powerful tools for single-molecule analysis of rotary molecular motors.

7.
J Colloid Interface Sci ; 678(Pt B): 477-486, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260296

RESUMEN

As the most promising anodes for Na+/K+ batteries (SIBs/PIBs), transitional metal sulfides present the advantages of high capacity, straightforwardly-controlled morphology and abundant redox reaction sites. However, maintaining the structural integrity of the electrode materials during cycling and improving the cycle life still face great challenges. Herein, CoS2@NPSC@MoS2 nano-spindle heterostructure with multiple heteroatoms co-doped carbon layers coupled with Janus metal sulfides (CoS2 and MoS2) were successfully fabricated via the successive organic coating, gas-phase phosphorization and the final hydrothermal reaction processes. Benefiting from the uniformly dispersed CoS2 nanocrystals in the interior of carbon layer and the MoS2 nanosheets arrays in the exterior, Na+/K+ diffusion distances are remarkedly shortened and the reaction kinetics are greatly improved, which also provide more active sites on the surface for exposure to the electrolyte. The presence of heterogeneous atomic N/P/S co-doped carbon layer greatly improves the electrochemical conductivity of the heterostructure and provide additional buffer space for volume changes, which is conducive to retaining the integrity of the electrode structure during the cycling processes. When used as the anode material for SIBs/PIBs, it reached the reversible specific capacity of 340.44 mAh g-1 at 5.0 A g-1 after 1000 cycles for SIBs and 37.53 mAh g-1 at 5.0 A g-1 after 800 cycles for PIBs. This work demonstrates a reliable and simple strategy for the rational design of Janus metal sulfides heterostructures for high performance Na+/K+ storage application.

8.
Biol Pharm Bull ; 47(9): 1487-1493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261048

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a key regulator of cell differentiation, proliferation, and survival in hematopoiesis, immune responses, and other biological systems. STAT3 transcriptional activity is strictly regulated through various mechanisms, such as phosphorylation and dephosphorylation. In this study, we attempted to identify novel phosphatases which regulate STAT3 activity in response to cytokine stimulations. To this end, leukemia inhibitory factor (LIF)/STAT3 dependent phosphatase induction was evaluated in the mouse hepatoma cell line Hepa1-6. After LIF stimulation, the expression of several atypical dual specific phosphatases (aDUSPs) was upregulated in Hepa1-6 cells. Among the LIF-induced aDUSPs, we focused on DUSP15 and clarified its functions in LIF/STAT3 signaling using RNA interference. DUSP15 knockdown decreased LIF-induced Socs3 mRNA expression and STAT3 translocation. Furthermore, loss of DUSP15 reduced the phosphorylation of STAT3 at Tyr705 and Janus family tyrosine kinase 1 (Jak1) at Tyr1034/1035 in response to LIF. The interaction between Jak1 and DUSP15 was observed in LIF-stimulated Hepa1-6 cells. We also demonstrated the suppression of granulocyte colony-stimulating factor (G-CSF)-mediated gp130/STAT3-dependent cell growth of Ba/F-G133 cells via DUSP15 knockdown. Therefore, DUSP15 functions as a positive feedback regulator in the Jak1/STAT3 signaling cascade.


Asunto(s)
Fosfatasas de Especificidad Dual , Janus Quinasa 1 , Factor Inhibidor de Leucemia , Factor de Transcripción STAT3 , Animales , Ratones , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Janus Quinasa 1/metabolismo , Janus Quinasa 1/genética , Factor Inhibidor de Leucemia/metabolismo , Fosforilación , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-39263912

RESUMEN

Grain boundary (GB) engineering includes grain size and GB segregation. Grain size has been proven to affect the electrical properties of Mg3(Sb, Bi)2 at low temperatures. However, the formation mechanism of GB segregation and what kind of GB segregation is beneficial to the performance are still unclear. Here, the Ga/Bi cosegregation at GBs and Mg segregation within grains optimize the transport of electrons and phonons simultaneously. Ga/Bi cosegregation promotes the formation of Janus-like structures due to the diverse ordering tendencies of liquid Mg3Sb2 and Mg3Bi2 and the absence of a solid solution of Ga/Bi. The Janus-like structure significantly reduces the room-temperature lattice thermal conductivity by introducing diverse microdefects. Meanwhile, a coherent interface between the nano Mg segregation region and the matrix is formed, which reduces the thermal conductivity without affecting the carrier transport. Furthermore, the band structure calculations show that Ga doping introduces the resonance level, increasing the Seebeck coefficient. Finally, the lattice thermal conductivity reaches ∼0.4 W m-1 K-1, and a high average ZT of 1.21 between 323 and ∼773 K is achieved for Mg3.2Y0.02Ga0.03Sb1.5Bi0.5. This work provides guidance for improving the thermoelectric performance via designing cosegregation.

10.
Biosens Bioelectron ; 266: 116713, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39232436

RESUMEN

Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA µM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Sudor , Textiles , Sudor/química , Técnicas Biosensibles/instrumentación , Humanos , Dispositivos Electrónicos Vestibles , Nanofibras/química , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica
11.
Acta Biomater ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243837

RESUMEN

Traditional adhesive hydrogels perform well in tissue adhesion but they fail to prevent postoperative tissue adhesion. To address this challenge, a biodegradable Janus adhesive hydrogel (J-AH) was designed and fabricated by the assembly of three different functional layers including anti-adhesive layer, reinforceable layer, and wet tissue adhesive layer. Each layer of J-AH serves a specific function: the top zwitterionic polymeric anti-adhesive layer shows superior resistance to cell/protein and tissue adhesion; the middle poly(vinyl alcohol)/tannic acid reinforceable matrix layer endows the hydrogel with good mechanical toughness of ∼2.700 MJ/m3; the bottom poly(acrylic acid)/polyethyleneimine adhesive layer imparts tough adhesion (∼382.93 J/m2 of interfacial toughness) to wet tissues. In the rat liver and femoral injury models, J-AH could firmly adhere to the bleeding tissues to seal the wounds and exhibit impressive hemostatic efficiency. Moreover, in the in vivo adhesion/anti-adhesion assay of J-AH between the defected cecum and peritoneal walls, the top anti-adhesive layer can effectively inhibit undesired postoperative abdominal adhesion and inflammatory reaction. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels with multi-functions including tissue adhesion, anti-postoperative adhesion and biodegradation. STATEMENT OF SIGNIFICANCE: Despite many adhesive hydrogels with tough tissue adhesion capability have been reported, their proclivity for undesired postoperative adhesion remains a serious problem. The postoperative adhesion may lead to major complications and even endanger the lives of patients. The injectable hydrogels can cover the irregular wound and suppress the formation of postoperative adhesion. However, due to the lack of adhesive properties with tissue, it is difficult for the hydrogels to maintain on the wound surface, resulting in poor anti-postoperative adhesion effect. Herein, we design a Janus adhesive hydrogel (J-AH). J-AH integrates together robust wet tissue adhesion and anti-postoperative adhesion. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels.

12.
ACS Appl Mater Interfaces ; 16(36): 47178-47191, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39222394

RESUMEN

Guided bone regeneration (GBR) technology has been demonstrated to be an effective method for reconstructing bone defects. A membrane is used to cover the bone defect to stop soft tissue from growing into it. The biosurface design of the barrier membrane is key to the technology. In this work, an asymmetric functional gradient Janus membrane was designed to address the bidirectional environment of the bone and soft tissue during bone reconstruction. The Janus membrane was simply and efficiently prepared by the multilayer self-assembly technique, and it was divided into the polycaprolactone isolation layer (PCL layer, GBR-A) and the nanohydroxyapatite/polycaprolactone/polyethylene glycol osteogenic layer (HAn/PCL/PEG layer, GBR-B). The morphology, composition, roughness, hydrophilicity, biocompatibility, cell attachment, and osteogenic mineralization ability of the double surfaces of the Janus membrane were systematically evaluated. The GBR-A layer was smooth, dense, and hydrophobic, which could inhibit cell adhesion and resist soft tissue invasion. The GBR-B layer was rough, porous, hydrophilic, and bioactive, promoting cell adhesion, proliferation, matrix mineralization, and expression of alkaline phosphatase and RUNX2. In vitro and in vivo results showed that the membrane could bind tightly to bone, maintain long-term space stability, and significantly promote new bone formation. Moreover, the membrane could fix the bone filling material in the defect for a better healing effect. This work presents a straightforward and viable methodology for the fabrication of GBR membranes with Janus-based bioactive surfaces. This work may provide insights for the design of biomaterial surfaces and treatment of bone defects.


Asunto(s)
Regeneración Ósea , Osteogénesis , Poliésteres , Regeneración Ósea/efectos de los fármacos , Animales , Poliésteres/química , Poliésteres/farmacología , Osteogénesis/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Polietilenglicoles/química , Membranas Artificiales , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Humanos , Regeneración Tisular Dirigida/métodos , Conejos , Ratones
13.
ACS Appl Mater Interfaces ; 16(37): 49030-49040, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39226320

RESUMEN

Foodborne illnesses caused by Salmonella bacteria pose a significant threat to public health. It is still challenging to detect them effectively. Herein, biotemplated Janus disk-shaped magnetic microrobots (BJDMs) based on diatomite are developed for the highly efficient detection of Salmonella in milk. The BJDMs were loaded with aptamer, which can be magnetically actuated in the swarm to capture Salmonella in a linear range of 5.8 × 102 to 5.8 × 105 CFU/mL in 30 min, with a detection limit as low as 58 CFU/mL. In addition, the silica surface of BJDMs exhibited a large specific surface area to adsorb DNA from captured Salmonella, and the specificity was also confirmed via tests of a mixture of diverse foodborne bacteria. These diatomite-based microrobots hold the advantages of mass production and low cost and could also be extended toward the detection of other types of bacterial toxins via loading different probes. Therefore, this work offers a reliable strategy to construct robust platforms for rapid biological detection in practical applications of food safety.


Asunto(s)
Tierra de Diatomeas , Salmonella , Tierra de Diatomeas/química , Salmonella/aislamiento & purificación , Animales , Leche/microbiología , Microbiología de Alimentos , Límite de Detección , Aptámeros de Nucleótidos/química , Dióxido de Silicio/química , Técnicas Biosensibles/métodos
14.
Adv Mater ; : e2410209, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300868

RESUMEN

Organic materials are promising candidates for the electrodes of aqueous zinc-ion batteries due to their nonmetallic nature, environmental friendliness, and cost-effectiveness. However, they often suffer from significant dissolution during the charge-discharge process, which poses a major hurdle to their practical applications. Inspired by membrane-less organelles in cells, a simple and versatile strategy is proposed-constructing a Janus catholyte/cathode structured electrode based on liquid-liquid phase separation, in which redox-active organic molecules are confined in the liquid state within the activated carbon, thereby eliminating the volume effect and preventing their diffusion into the electrolyte. The customization of phase separation systems by leveraging the hydrophobicity/hydrophilicity differences of various anions is successfully demonstrated. This approach allows for precise regulation of ion cluster/coordination structures, enabling the confinement of active substances while ensuring efficient ion transport. Consequently, the as-constructed Zn||Janus catholyte/cathode cells exhibit superior reversible rate capacity (186 mA h g-1 at 5.0 A g-1) and remarkable cycling performance (retention of 72.5% after 12 000 cycles). The strategy in building Janus catholyte/cathode structured electrodes breaks free from the limitations imposed by traditional solid-state electrodes, offering tremendous opportunities for exploring diverse advanced battery systems.

15.
Small ; : e2408182, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308200

RESUMEN

Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper-based moist-electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient-formed spore-based biofilm and asymmetric electrode deposition enable sustained high-efficiency power output. A Janus hydrophobic-hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low-humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco-friendly, cost-effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics.

16.
Macromol Rapid Commun ; : e2400556, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283827

RESUMEN

Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively. The resulting Janus fabric exhibits an antibacterial rate of 99.9% against both E. coli and S. aureus, along with a hydrophobic property on its single side (PTCO-HDA@PLMA). Additionally, the establishment of a surface-free energy gradient across the fabric confers superior moisture-permeability to the Janus fabric, offering advantages in preserving textile comfort. Moreover, this approach does not significantly compromise the original fabric properties, such as mechanical strength, moisture permeability, and fabric softness. The proposed method offers a straightforward and scalable strategy for textile finishing, demonstrating great potential in expanding the application scope of PTCO fabrics, and it may hold a pivotal role in diverse applications, notably encompassing home textiles, wound dressings, and high-performance sportswear.

17.
ACS Appl Mater Interfaces ; 16(37): 49640-49650, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39241200

RESUMEN

Hydrophilic metal-organic frameworks (MOFs) are promising for solar steam generation from waste or seawater. In this study, we propose a MOF-based Janus membrane for efficient solar steam generation. We selected MOF-303 for its hydrophilic properties and 1D channels with 6.5 Å cavity diameter, making it an excellent water-absorbing layer. Characterization via Raman spectroscopy and differential scanning calorimetry indicates that the nanoconfinement within MOF-303 can reduce the water evaporation enthalpy, thereby boosting water production efficiency. When deposited on various substrates, MOF-303 aimed to optimize solar steam generation. We enhanced the membrane performance by incorporating carbon black (CB), polydopamine (PDA), and perfluoro-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-F), materials known for their solar-to-thermal energy conversion capabilities. PEDOT-F, in particular, also served as a hydrophobic layer, preventing salt recrystallization during seawater operation. Under one sun irradiation, the water evaporation flux for deionized water increased from 0.31 to 0.79 kg h-1 m-2 using a porous hydrophilic poly(vinylidene difluoride) substrate and further to 2.36 kg h-1 m-2 with the optimized MOF-303-CB/PDA-PEDOT-F membrane, achieving an energy conversion efficiency of 97%. Additionally, the desalination capability of the MOF-303 membrane effectively reduced metal ion concentrations (Na+, K+, Mg2+, and Ca2+) to meet the WHO drinking water standards. These findings demonstrate the significant potential of the MOF-303-based Janus membrane for practical applications in solar steam generation and desalination, combining high water evaporation rates with excellent energy conversion efficiency.

18.
Circ Res ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263750

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHOD: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.

19.
Nanomicro Lett ; 17(1): 14, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325227

RESUMEN

The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort. However, the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge. Herein, a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat. The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel. Subsequently, hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient. The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side, and can dynamically and continuously control the transportation time in a wide range of 3-66 s as the temperature increases from 10 to 40 °C. This smart fabric can quickly dissipate heat at high temperatures, while at low temperatures, it can slow down the heat dissipation rate and prevent the human from becoming too cold. In addition, the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side. This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.

20.
Rheumatol Int ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311915

RESUMEN

Psoriatic arthritis is a medical condition that lies at the intersection of various fields of medicine, and its therapy always requires a comprehensive, holistic approach. Biological disease-modifying antirheumatic drugs (bDMARDs) constitute an extremely effective treatment method for PsA, provided that appropriate principles for patient qualification for the drug are followed, along with subsequent monitoring of the response to treatment. Based on their mechanisms of action, four main groups of bDMARDs used in PsA can be distinguished (TNF inhibitors, IL-12/23 and IL-23 inhibitors, IL-17 inhibitors, CTLA4 agonists). Clinical trials are ongoing in search of registration for additional bDMARDs, and the tasks for doctors and scientists worldwide include patient education, increasing treatment accessibility, and optimizing its costs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...