Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2411248, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363668

RESUMEN

The rapid development of wearable electronics, personal mobile equipment, and Internet of Things systems demands smart textiles that integrate multiple functions with enhanced durability. Herein, the study reports robust and multifunctional textiles with energy harvesting, electromagnetic interference (EMI) shielding, flame resistance, and Joule heating capabilities, fabricated by a facile yet effective integration method using the deposition of cross-linked MXene (Ti3C2Tx), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) onto traditional Korean paper, Hanji via vacuum filtration. Comprehensive analyses confirm robust cross-linking, structural integrity, and interface stability in the MXene/PVA/PAA-Hanji (MPP-H) textiles, which synergistically boost their multifunctional performance. The MPP-H textiles exhibit remarkable power generation lasting over 60 min with a power density of 102.2 µW cm-3 and an energy density of 31.0 mWh cm-3 upon the application of 20 µL of NaCl solution. The EMI shielding effectiveness (SE) per unit thickness in the X-band (8.2-12.4 GHz) is up to 437.6 dB mm-1, with the ratio of absorption to reflection reaching 4.5, outperforming existing EMI shielding materials. Superior thermo-chemo-mechanical properties (flame resistance, rapid Joule heating, durability, and washability) further demonstrate their versatile usability. The MPP-H enables diverse functionalities within a single, robust textile through a scalable fabrication method, offering transformative potential for wearable and mobility platforms.

2.
Adv Funct Mater ; 34(33)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39399303

RESUMEN

Stretchable electrodes are an essential component in soft actuator systems. In particular, Joule heating electrodes (JHEs) are required for thermal actuation systems. A highly stretchable, patternable, and low-voltage operating JHE based on hybrid layers of silver nanowires (AgNWs) and carbon nanotubes (CNTs) is reported. The conductive layers were applied on a locally pre-strained bistable electroactive polymer (BSEP) membrane to form a wrinkled conductive surface with a low resistance of 300 Ω/sq, and subsequently patterned to a serpentine trace by laser engraving. The resistance of the resulting electrode remains nearly unchanged up to ~80-90% area strain. By applying a voltage of 7 - 9 V to the electrode, the temperature of the BSEP membrane increased to more than 60 °C, well above the polymer's phase transition temperature of 46 °C, thereby lowering its modulus by a factor of 103. An electronic Braille device based on the JHEs on a BSEP membrane was assembled with a diaphragm chamber. The electrode was patterned into 3 × 2 individually addressable pixels according to the standard U.S. Braille cell format. Through Joule heating of the pixels and local expansion of the BSEP membrane using a small pneumatic pressure, the pixels deformed out of the plane by over 0.5 mm to display specific Braille letters. The Braille content can be refreshed for 20,000 cycles at the same operating voltage.

3.
ACS Appl Mater Interfaces ; 16(39): 52290-52298, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39292995

RESUMEN

Vanadium oxides have been regarded as highly promising cathodes for aqueous zinc-ion batteries (ZIBs). However, obtaining high-performance vanadium oxide-based cathodes suitable for industrial application remains a significant challenge due to the need for cost-effective, straightforward, and efficient preparation methods. Herein, we present a facile and rapid synthesis of a composite cathode, consisting of layer-stacked VO2/V2O5 and graphene-like carbon nanosheets, in just 2.5 s by treating the commercial V2O5 powder via a flash Joule heating strategy. When employed as the cathode for ZIBs, the resulting composite delivers a comparable rate capacity of 459 mA h g-1 at 0.2 A g-1 and remarkable cycle stabilities of 355.5 mA h g-1 after 2500 cycles at 1.0 A g-1 and 169.5 mA h g-1 after 10,000 cycles at 10 A g-1, respectively. Further electrochemical analysis reveals that the impressive performance is attributed to the accelerated charge transfer and the alleviated structure degradation, facilitated by the abundant sites and a built-in electric field of the layer-stacked VO2/V2O5 heterostructure, as well as the excellent conductivity of graphene-like carbon nanosheets. This work introduces a unique approach for ultrafast and low-cost fabrication of high-performance vanadium oxide-based composite cathodes toward efficient ZIBs.

4.
Soft Robot ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330933

RESUMEN

Various fields, including medical and human interaction robots, gain advantages from the development of bioinspired soft actuators. Many recently developed grippers are pneumatics that require external pressure supply systems, thereby limiting the autonomy of these robots. This necessitates the development of scalable and efficient on-board pressure generation systems. While conventional air compression systems are hard to miniaturize, thermopneumatic systems that joule heat a transducer material to generate pressure present a promising alternative. However, the transducer materials of previously reported thermopneumatic systems demonstrate high heat capacities and limited surface area resulting in long response times and low operation frequencies. This study presents a thermopneumatic pressure generator using aerographene, a highly porous (>99.99%) network of interconnected graphene microtubes, as lightweight and low heat capacity transducer material. An aerographene pressurizer module (AGPM) can pressurize a reservoir of 4.2 cm3 to ∼14 kPa in 50 ms. Periodic operation of the AGPM for 10 s at 0.66 Hz can further increase the pressure in the reservoir to ∼36 kPa. It is demonstrated that multiple AGPMs can be operated parallelly or in series for improved performance. For example, three parallelly operated AGPMs can generate pressure pulses of ∼21.5 kPa. Connecting AGPMs in series increase the maximum pressure achievable by the system. It is shown that three AGPMs working in series can pressurize the reservoir to ∼200 kPa in about 2.5 min. The AGPM's minimalistic design can be easily adapted to circuit boards, making the concept a promising fit for the on-board pressure supply of soft robots.

5.
Polymers (Basel) ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39274129

RESUMEN

Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl alcohol (PVA) polymers onto a buckled conductive carbon nanotube-polydimethylsiloxane (CNTs-PDMS) composite film. In this system, the PVA and PDMS provide water sensing and stretchability, while the coiled CNT film offers sufficient conductivity. Notably, the composite film possesses high stretchability (205%), exceptional compression sensing ability, humility sensing ability, and remarkable electrical stability under various deformations. The produced CNT composite film exhibited deformation (bending/twisting) and high electro-heating performance (108 °C) at a low driving voltage of 2 V. The developed CNT composite film, together with its exceptional sensing and electrothermal performance, provides the material with promising prospects for practical applications in wearable electronics.

6.
Small ; : e2403967, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106223

RESUMEN

Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.

7.
Adv Sci (Weinh) ; : e2406758, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116320

RESUMEN

Transparent electromagnetic interference (EMI) shielding is highly desired in specific visual scenes, but the challenge remains in balancing their EMI shielding effectiveness (SE) and optical transmittance. Herein, this study proposed a directionally aligned silver nanowire (AgNW) network construction strategy to address the requirement of high EMI SE and satisfactory light transmittance using a rotation spraying technique. The orientation distribution of AgNW is induced by centrifugal inertia force generated by a high-speed rotating roller, which overcomes the issue of high contact resistance in random networks and achieves high conductivity even at low AgNW network density. Thus, the obtained transparent conductive film achieved a high light transmittance of 72.9% combined with a low sheet resistance of 4.5 Ω sq-1 and a desirable EMI SE value of 35.2 dB at X band, 38.9 dB in the K-band, with the highest SE of 43.4 dB at 20.4 GHz. Simultaneously, the excellent conductivity endowed the film with outstanding Joule heating performance and defogging/deicing ability, ensuring the visual transparency of windows when shielding electromagnetic waves. Hence, this research presents a highly effective strategy for constructing an aligned AgNW network, offering a promising solution for enhancing the performance of optical-electronic devices.

8.
Small ; : e2404364, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115351

RESUMEN

Ultrahigh-temperature Joule-heating of carbon nanostructures opens up unique opportunities for property enhancements and expanded applications. This study employs rapid electrical Joule-heating at ultrahigh temperatures (up to 3000 K within 60 s) to induce a transformation in nanocarbon aerogels, resulting in highly graphitic structures. These aerogels function as versatile platforms for synthesizing customizable metal oxide nanoparticles while significantly reducing carbon emissions compared to conventional furnace heating methods. The thermal conductivity of the aerogel, characterized by Umklapp scattering, can be precisely adjusted by tuning the heating temperature. Utilizing the aerogel's superhydrophobic properties enables its practical application in filtration systems for efficiently separating toxic halogenated solvents from water. The hierarchically porous aerogel, featuring a high surface area of 607 m2 g-1, ensures the uniform distribution and spacing of embedded metal oxide nanoparticles, offering considerable advantages for catalytic applications. These findings demonstrate exceptional catalytic performance in oxidative desulfurization, achieving a 98.9% conversion of dibenzothiophene in the model fuel. These results are corroborated by theoretical calculations, surpassing many high-performance catalysts. This work highlights the pragmatic and highly efficient use of nanocarbon structures in nanoparticle synthesis under ultrahigh temperatures, with short heating durations. Its broad implications extend to the fields of electrochemistry, energy storage, and high-temperature sensing.

9.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39120394

RESUMEN

The production of graphene from cost-effective and readily available sources remains a significant challenge in materials science. This study investigates the potential of common pencil leads as precursors for graphene synthesis using the Flash Joule Heating (FJH) process. We examined 6H, 4B, and 14B pencil grades, representing different graphite-to-clay ratios, under varying voltages (0 V, 200 V, and 400 V) to elucidate the relationships among initial composition, applied voltage, and resulting graphene quality. Samples were characterized using Raman spectroscopy, electrical resistance measurements, and microscopic analysis. The results revealed grade-specific responses to applied voltages, with all samples showing decreased electrical resistance post-FJH treatment. Raman spectroscopy indicated significant structural changes, particularly in ID/IG and I2D/IG ratios, providing insights into defect density and layer stacking. Notably, the 14B pencil lead exhibited unique behavior at 400 V, with a decrease in the ID/IG ratio from 0.135 to 0.031 and an increase in crystallite size from 143 nm to 612 nm, suggesting potential in situ annealing effects. In contrast, harder grades (6H and 4B) showed increased defect density at higher voltages. This research contributes to the development of more efficient and environmentally friendly methods for graphene production, potentially opening new avenues for sustainable and scalable synthesis.

10.
Polymers (Basel) ; 16(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204511

RESUMEN

In response to the growing demand for lightweight yet robust materials in electric vehicle (EV) battery casings, this study introduces an advanced carbon fiber-reinforced composite (CFRC). This novel material is engineered to address critical aspects of EV battery casing requirements, including mechanical strength, electromagnetic interference (EMI) shielding, and thermal management. The research strategically combines carbon composite components with copper-plated polyester non-woven fabric (CFRC/Cu) and melamine foam board (CFRC/Me) into a sandwich-structure composite plus a series of composites with graphite particle-integrated matrix resin (CFRC+Gr). Dynamic mechanical analysis (DMA) revealed that the inclusion of copper-plated fabric significantly enhanced the stiffness, and the specific tensile strength of the new composites reached 346.8 MPa/(g/cm3), which was higher than that of other metal materials used for EV battery casings. The new developed composites had excellent EMI shielding properties, with the highest shielding effectives of 88.27 dB from 30 MHz to 3 GHz. Furthermore, after integrating the graphite particles, the peak temperature of all composites via Joule heating was increased. The CFRC+Gr/Me reached 68.3 °C under a 5 V DC power supply after 180 s. This research presents a comprehensive and innovative approach that adeptly balances mechanical, electromagnetic, and thermal requirements for EV battery casings.

11.
Water Res ; 265: 122306, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182349

RESUMEN

Volatile fatty acids (VFAs) serve as building blocks for a wide range of chemicals, but it is difficult to extract VFAs from pH-neutral wastewater using evaporation methods because of the ionized form. This study presents a new membrane electrolysis distillation (MED) process that extracts VFAs from such fermentation solutions. MED uniquely integrates pH regulation and joule heating to facilitate the efficient evaporation of VFAs. This integration occurs alongside a hydrophobic membrane that ensures effective gas-liquid phase separation. Operating solely on electricity, MED achieved an acid flux rate of 12.03 g/m2/h at 6V. In contrast, the control results without the joule heating or pH swing only obtained a 0.23 g/m2/h and 0.32 g/m2/h flux, respectively. In addition, a physicochemical model was developed to assess the impacts of temperature on membrane surface pH. This system enhances resource recovery from waste streams and helps achieve a circular carbon economy.


Asunto(s)
Destilación , Electrólisis , Ácidos Grasos Volátiles , Fermentación , Aguas Residuales , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Destilación/métodos , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos
12.
Small ; : e2400892, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953333

RESUMEN

Ammonia fuel cells using carbon-neutral ammonia as fuel are regarded as a fast, furious, and flexible next-generation carbon-free energy conversion technology, but it is limited by the kinetically sluggish ammonia oxidation reaction (AOR), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Platinum can efficiently drive these three types of reactions, but its scale-up application is limited by its susceptibility to poisoning and high cost. In order to reduce the cost and alleviate poisoning, incorporating Pt with various metals proves to be an efficient and feasible strategy. Herein, PtFeCoNiIr/C trifunctional high-entropy alloy (HEA) catalysts are prepared with uniform mixing and ultra-small size of 2 ± 0.5 nm by Joule heating method. PtFeCoNiIr/C exhibits efficient performance in AOR (Jpeak = 139.8 A g-1 PGM), ORR (E1/2 = 0.87 V), and HER (E10 = 20.3 mV), outperforming the benchmark Pt/C, and no loss in HER performance at 100 mA cm-2 for 200 h. The almost unchanged E1/2 in the anti-poisoning test indicates its promising application in real fuel cells powered by ammonia. This work opens up a new path for the development of multi-functional electrocatalysts and also makes a big leap toward the exploration of cost-effective device configurations for novel fuel cells.

13.
ACS Appl Mater Interfaces ; 16(29): 38490-38500, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980000

RESUMEN

High-performance electromagnetic interference (EMI) shielding materials with high flexibility, low density, and hydrophobic surface are crucial for modern integrated electronics and telecommunication systems in advanced industries like aerospace, military, artificial intelligence, and wearable electronics. In this study, we present flexible and hydrophobic MXene/Ni-coated polyester (PET) fabrics featuring a double-layered structure, fabricated via a facile and scalable dip-dry coating process followed by electroless nickel plating. Increasing the dip-dry coating iterations up to 10 cycles boosts the MXene loading content (∼31 wt %) and electrical conductivity (∼86 S/cm) of MXene-coated PET fabrics, while maintaining constant porosity (∼95%). The addition of a Ni layer enhances hydrophobicity, achieving a high water contact angle of ∼114° compared to only MXene-coated PET fabrics (∼49°). Furthermore, the 30 µm thick MXene/Ni-coated PET fabric demonstrates superior electrical conductivity (∼113.8 S/cm) and EMI shielding effectiveness (∼35.7 dB at 8-12 GHz) compared to only MXene- or Ni-coated PET fabrics. The EMI shielding performance of the MXene/Ni-coated PET fabric remains more stable in an air environment than only MXene-coated fabrics due to the outer Ni layer with excellent hydrophobicity and oxidation stability. Additionally, the MXene/Ni-coated PET fabric exhibits impressive Joule heating performance, swiftly converting electrical energy into heat and reaching high steady-state temperatures (32-92 °C) at low applied voltages (0.5-1.5 V).

14.
Materials (Basel) ; 17(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39063796

RESUMEN

Semiconductor oxides belonging to various families are ideal candidates for application in photocatalytic processes. One of the challenges facing photocatalytic processes today is improving their efficiency under sunlight irradiation. In this study, the growth and characterization of semiconductor oxide nanostructures and composites based on the ZnO and CuO families are proposed. The selected growth method is the resistive heating of Zn and Cu wires to produce the corresponding oxides, combined with galvanic corrosion of Zn. An exhaustive characterization of the materials obtained has been carried out using techniques based on scanning electron microscopy and optical spectroscopies. The method we have followed and the conditions used in this study present promising results, not only from a degradation efficiency point of view but also because it is a cheap, easy, and fast growth method. These characteristics are essential in order to scale the process beyond the laboratory.

15.
ACS Appl Mater Interfaces ; 16(25): 31877-31894, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38868858

RESUMEN

Interfacial failure in carbon fiber-reinforced epoxy (CFRE) laminates is a prominent mode of failure, attracting significant research attention. The large surface-energy mismatch between carbon fiber (CF) and epoxy results in a weaker interface. This study presents a facile yet effective method for enhancing the interfacial adhesion between CF and epoxy with self-healable interfaces. Two variants of a designer sizing agent, poly(ether imide) (PEI), were synthesized, one without a self-healing property termed BO, and the second one by incorporating disulfide metathesis in one of its monomers that renders self-healing properties at the interface-mediated by network reconfiguration, termed BA. 0.25 wt % of CF was found to be the optimum amount of BO and BA sizing agents. The surface free energy of CF drastically increased and became quite close to the surface energy of epoxy after the deposition of both sizing agents and the higher surface roughness. The improved surface wettability, presence of functional groups, and mechanical interlocking worked in tandem to strengthen the interface. The interlaminar shear strength (ILSS) and flexural strength (FS) of CFRE laminate sized with BO consequently increased by 35% and 22% and of CFRE laminate sized with BA increased by 26% and 19%, respectively. Fractography analysis revealed outstanding bonding between epoxy and PEI-CF, indicating that matrix fracture is the predominant mode of failure. The self-healable interfaces due to the preinstalled disulfide metathesis in the sizing agent resulted in 51% self-healing efficiency in ILSS for BA-sized CFRE laminate. Interestingly, the functional properties, deicing, and EMI shielding effectiveness were not compromised by modification of the interface with this designer sizing agent. This study opens new avenues for interfacial modification to improve the mechanical properties while retaining the key functional properties of the laminates.

16.
Front Chem ; 12: 1397066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903202

RESUMEN

This work provides a brief comparative analysis of the influence of heat creation on micropolar blood-based unsteady magnetised hybrid nanofluid flow over a curved surface. The Powell-Eyring fluid model was applied for modelling purposes, and this work accounted for the impacts of both viscous dissipation and Joule heating. By investigating the behaviours of Ag and TiO2 nanoparticles dispersed in blood, we aimed to understand the intricate phenomenon of hybridisation. A mathematical framework was created in accordance with the fundamental flow assumptions to build the model. Then, the model was made dimensionless using similarity transformations. The problem of a dimensionless system was then effectively addressed using the homotopy analysis technique. A cylindrical surface was used to calculate the flow quantities, and the outcomes were visualised using graphs and tables. Additionally, a study was conducted to evaluate skin friction and heat transfer in relation to blood flow dynamics; heat transmission was enhanced to raise the Biot number values. According to the findings of this study, increasing the values of the unstable parameters results in increase of the blood velocity profile.

17.
Nanomaterials (Basel) ; 14(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38869526

RESUMEN

In recent years, conductive polymer nanocomposites have gained significant attention due to their promising thermoresistive and Joule heating properties across a range of versatile applications, such as heating elements, smart materials, and thermistors. This paper presents an investigation of semi-crystalline polyvinylidene fluoride (PVDF) nanocomposites with 6 wt.% carbon-based nanofillers, namely graphene nanoplatelets (GNPs), multi-walled carbon nanotubes (MWCNTs), and a combination of GNPs and MWCNTs (hybrid). The influence of the mono- and hybrid fillers on the crystalline structure was analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the nanocomposites had increased amorphous fraction compared to the neat PVDF. Furthermore, nanocomposites enhanced the ß phase of the PVDF by up to 12% mainly due to the presence of MWCNTs. The resistive properties of the nanocompositions were weakly affected by the temperature in the analyzed temperature range of 25-100 °C; nevertheless, the hybrid filler composites were proven to be more sensitive than the monofiller ones. The Joule heating effect was observed when 8 and 10 V were applied, and the compositions reached a self-regulating effect at around 100-150 s. In general, the inclusion in PVDF of nanofillers such as GNPs and MWCNTs, and especially their hybrid combinations, may be successfully used for tuning the self-regulated Joule heating properties of the nanocomposites.

18.
Materials (Basel) ; 17(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893803

RESUMEN

The excellent electrical properties of graphene have received widespread attention. However, the difficulty of electron transfer between layers still restricts the application of graphene composite materials to a large extent. Therefore, in this study, graphene/polyimide films were subjected to a Joule heating treatment to improve the electrical conductivity of the film by ~76.85%. After multiple Joule thermal cycle treatments, the conductivity of the graphene/polyimide film still gradually increased, but the increase in amplitude tended to slow down. Finally, after eight Joule heat treatments, the conductivity of the graphene/polyimide film was improved by ~93.94%. The Joule heating treatment caused the polyimide to undergo atomic rearrangement near the interface bonded to the graphene, forming a new crystalline phase favourable for electron transport with graphene as a template. Accordingly, a model of the bilayer capacitive microstructure of graphene/polyimide was proposed. The experiment suggests that the Joule heating treatment can effectively reduce the distance between graphene electrode plates in the bilayer capacitive micro-nanostructures of graphene/polyimide and greatly increases the number of charge carriers on the electrode plates. The TEM and WAXS characterisation results imply atomic structure changes at the graphene/polyimide bonding interface.

19.
Macromol Rapid Commun ; : e2400370, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873978

RESUMEN

Liquid crystalline elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. In this study, multifunctional LCE actuators with strain sensing and joule heating responsivity are developed. LCEs are successfully synthesized using the thiol-ene two-staged michael addition polymerization (TMAP) method. The LCE films are further functionalized via sequential polydopamine (PDA) and silver electroless coating. It is found that the PDA coating enabled the anchoring of the Ag particles to the LCE, thereby enabling the electrical conductivity of the Ag-LCEs (<0.1 Ω cm-1). The studies confirm that the Ag/PDA coated LCEs can sense up to ≈30% strain, sense their own actuation strokes, and actuate at a rate of 1.83% s-1 while lifting a weight ≈50 times its mass in response to a 12 V 2A DC current.

20.
ACS Nano ; 18(26): 17326-17338, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38887893

RESUMEN

As a promising anode material, silicon-carbon composites encounter great challenges related to internal stress release and contact between the composites during lithiation. These issues lead to material degradation and concomitantly rapid capacity decline. Here, we report a type of shell-shell silicon-carbon (SS-Si/C) composite, which consists of a carbon shell tightly coated with a silicon shell. The mechanical analysis unveils that the dominant inward expansion of the Si shell is achieved through the synergistic effect of the outer carbon shell and the inner hollow structure. Benefiting from the well-tailored shell-shell structure, the SS-Si/C anode exhibits exceptional performance, boasting a high specific capacity (1690.3 mA h g-1 after 550 cycles at 0.5 A g-1), a high areal capacity (2.05 mA h cm-2 after more than 400 cycles at 0.5 mA cm-2), and an extended cycling life (1055.6 mA h g-1 after 1000 cycles at 8 A g-1), far exceeding commercially available Si/C anodes. Using the well-designed SS-Si/C anode, full cells assembled with LiCoO2 (LCO) or LiFePO4 (LFP) cathodes achieve favorable rate capability and cyclic stability. Notably, at a high rate of 6 C (1 C = 170 and 270 mA g-1 for LFP and LCO, respectively), these full cells deliver high specific capacities of 79.5 mA h g-1 and 64.9 mA h g-1 when using LCO and LFP, respectively, demonstrating the potential of SS-Si/C anodes for practical applications. The straightforward and safe synthesis method in this work enables the rational design of hollow structures with distinct properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...