RESUMEN
Citrus grandis fruit is a famous traditional Chinese medicine with various bioactivities, including cardioprotective effects. Polysaccharides are one of the key active ingredients responsible for its cardioprotective effects. This study aimed to investigate the structure and cardioprotective effect of a homogeneous polysaccharide from C. grandis fruit (CGP80-1) and explore its mechanism against myocardial ischemia-reperfusion (MI/R) injury. Structure analysis showed that CGP80-1 (11,917 Da) is an arabinan with compact coil chain conformation, containing â5)-α-L-Araf-(1â, â3,5)-α-L-Araf-(1â, and â2,3,5)-α-L-Araf-(1â as the backbone, as well as â5)-α-L-Araf-(1â and t-α-L-Araf as side-chains substituted at the C2 and C3 positions. Pharmacological experiments showed that pre-treatment with CGP80-1 could effectively alleviate MI/R injury by improving endogenous antioxidant enzymes and cardiac enzymes, reducing reactive oxygen species levels, and regulating apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. The protective effects were correlated with the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Further analysis of structure-activity relationships revealed that the myocardial protection effects of CGP80-1 might be attributed to its appropriate molecular weight, high arabinose content, and unique compact coil chain conformation. Overall, our results provide insight into the chemical structure of CGP80-1 and its mechanism of action, suggesting that CGP80-1 could be a candidate drug for myocardial protection.
Asunto(s)
Apoptosis , Citrus , Proteína 1 Asociada A ECH Tipo Kelch , Daño por Reperfusión Miocárdica , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis/efectos de los fármacos , Citrus/química , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Frutas/química , Masculino , Endorribonucleasas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ratones , Proteínas de Choque Térmico/metabolismo , RatasRESUMEN
Fish sauce, derived from fermented fish, exhibits a notable antioxidant effect after a six-month fermentation process, and we propose that potential antioxidant peptides were present in the fish sauce. We isolated, purified, and identified potential bioactive antioxidant peptides by using fish sauce fermented for 6 months. Additionally, molecular simulation was employed to investigate the antioxidant action mechanism of these bioactive peptides. The molecular docking results revealed that FS4-1 (MHQLSKK), FS4-2 (VLDNSPER), FS4-3 (MNPPAASIK), FS6-1(VLKQAAAGR), and FS6-2 (SPDVSPRR), could dock with the Keap1 receptor. The primary force (Van der Waals' force and hydrogen bonds) and key sites (GLY509 and ALA510) of Keap1 binding to peptides were determined. The active center was located in the side chain of amino acid Met at positions C7H78 and C7H79. We here identified antioxidant peptides in fish sauce and revealed the antioxidant mechanism through molecular simulations.
Asunto(s)
Antioxidantes , Productos Pesqueros , Peces , Simulación del Acoplamiento Molecular , Péptidos , Antioxidantes/química , Péptidos/química , Animales , Productos Pesqueros/análisis , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Teoría Cuántica , Fermentación , Secuencia de AminoácidosRESUMEN
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Asunto(s)
Arsénico , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Arsénico/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Silicon dioxide particles (SiO2) are a widely used novel material, and SiO2 that enter the body can accumulate in the spleen and cause spleen injury. Quercetin (Que) has a strong antioxidant activity and can also regulate and improve immune function, but whether Que can improve SiO2-induced spleen injury and its underlying mechanism remain to be explored. Herein, we established a C57BL/6 mice model with SiO2 exposure (10 mg/kg) and treated with Que (25 mg/kg). We also cultured CTLL-2 cells for in vitro experiments. Studies in vivo and in vitro showed that SiO2 exposure caused oxidative stress and mitochondrial dynamics disorder, which led to decrease of mitochondrial membrane potential (ΔΨm) and mitochondrial DNA (mtDNA) leakage. mtDNA was recognized by Z-DNA binding protein 1 (ZBP1) in the cytoplasm and increased the expression of ZBP1. This process further promoted the assembly of the ZBP1-mediated PANoptosome, which subsequently induced PANoptosis. Interestingly, supplementation with Que significantly reversed these changes. Specifically, Que mitigated spleen ZBP-1 mediated PANoptosis through preventing mtDNA leakage via regulating nuclear factor erythroid 2-related factor 2/reactive oxygen species/dynamin-related protein 1 (Nrf2/ROS/Drp1) axis. This study enriches the understanding of the toxicological mechanisms of SiO2 and provides evidence for the protective effects of Que against SiO2-induced splenic toxicity.
RESUMEN
Immunotherapy has revolutionized cancer treatment, yet the efficacy of immunotherapeutic approaches remains limited. Resistance to ferroptosis is one of the reasons for the poor therapeutic outcomes in tumors with Kelch-like ECH-associated protein 1 (KEAP1) mutations. However, the specific mechanisms by which KEAP1-mutant tumors resist immunotherapy are not fully understood. In this study, we showed that the loss of function in KEAP1 results in resistance to ferroptosis. We identified NAD(P)H Quinone Dehydrogenase 1 (NQO1) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and revealed that inducing NQO1-mediated ferroptosis in KEAP1-deficient tumors triggers an antitumor immune cascade. Additionally, it was found that NQO1 protein levels could serve as a candidate biomarker for predicting sensitivity to immunotherapy in clinical tumor patients. We validated these findings in several preclinical tumor models. Overall, KEAP1 mutations define a unique disease phenotype, and targeting its key downstream molecule NQO1 offers new hope for patients with resistance to immunotherapy.
RESUMEN
CD169+ macrophages are a newly defined macrophage subpopulation that can recognize and bind with other cells through related ligands, playing an essential role in antigen presentation and immune tolerance. However, its role in Allergic Rhinitis (AR) is still unclear. To investigate the characteristics of CD169+ macrophages in AR, this work first detects their expression patterns in the nasal mucosa of clinical patients. These results show a significant increase in CD169+ macrophages in the nasal mucosa of patients with AR. Subsequently, this work establishes an animal AR model using CD169 transgenic mice and compared the advantages of the two models. Moreover, this work also demonstrates the effects of CD169 knockout on eosinophils, Th cells, Treg cells, and the migration of dendritic cells (DCs). In addition, this metabolomic data shows that CD169+ macrophages can upregulate alanine production and increase reactive oxygen species (ROS) levels. This process may be mediated through the Keap1/Nrf2/HO-1 signaling pathway. In addition, this work also finds that SLC38A2 plays an essential role in the process of CD169+ macrophages promoting alanine uptake by DCs. This study confirms that CD169+ macrophages can upregulate their internal alanine production and increase ROS levels through the Keap1/Nrf2/HO-1 axis, playing an irreplaceable role in AR.
RESUMEN
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Asunto(s)
Neoplasias Encefálicas , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Animales , Humanos , Elementos de Respuesta Antioxidante/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Plantas/metabolismo , Metabolismo Secundario , Transducción de SeñalRESUMEN
This study isolated a novel antioxidant peptide from black soldier fly larvae (BSFL) using enzymatic hydrolysis. Firstly, the BSFL enzymatic hydrolysate was fractionated through ultrafiltration, with the <3 kDa fraction exhibiting the strongest DPPH and ABTS radical scavenging activity. Subsequently, this fraction was further fractionated through gel filtration chromatography and RP-HPLC. Totally, 153 peptides were identified through LC-MS/MS analysis, from which a novel peptide EDEGTYKCVLS (Pep6) was screened according to activity prediction and verification. Pep6 exhibited high radical scavenging capacity and cytoprotective effect on HepG2 cells against H2O2 damage, meanwhile significantly increasing the intracellular antioxidant enzymes activity. Molecular docking analysis indicated that Pep6 competitively bound to Keap1, thereby inhibiting the formation of Keap1-Nrf2 complex, ultimately protecting cells from oxidative stress damage. In this study, a novel antioxidant peptide Pep6 was identified from BSFL, and its antioxidant mechanism was elucidated, providing a theoretical basis for its use as a natural antioxidant.
RESUMEN
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
RESUMEN
Background/Objectives: The study of oxidative stress in cells and ways to prevent it attract increasing attention. Antioxidant defense of cells can be activated by releasing the transcription factor Nrf2 from a complex with Keap1, its inhibitor protein. The aim of the work was to study the effect of the modular nanotransporter (MNT) carrying an R1 anti-Keap1 monobody (MNTR1) on cell homeostasis. Methods: The murine hepatocyte AML12 cells were used for the study. The interaction of fluorescently labeled MNTR1 with Keap1 fused to hrGFP was studied using the Fluorescence-Lifetime Imaging Microscopy-Förster Resonance Energy Transfer (FLIM-FRET) technique on living AML12 cells transfected with the Keap1-hrGFP gene. The release of Nrf2 from the complex with Keap1 and its levels in the cytoplasm and nuclei of the AML12 cells were examined using a cellular thermal shift assay (CETSA) and confocal laser scanning microscopy, respectively. The effect of MNT on the formation of reactive oxygen species was studied by flow cytometry using 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Results: MNTR1 is able to interact with Keap1 in the cytoplasm, leading to the release of Nrf2 from the complex with Keap1 and a rapid rise in Nrf2 levels both in the cytoplasm and nuclei, ultimately causing protection of cells from the action of hydrogen peroxide. The possibility of cleavage of the monobody in endosomes leads to an increase in the observed effects. Conclusions: These findings open up a new approach to specifically modulating the interaction of intracellular proteins, as demonstrated by the example of the Keap1-Nrf2 system.
RESUMEN
Background/Objectives: The beneficial effects of the flavonoid chrysin can be reduced by its poor oral bioavailability. It has been shown that chrysin-8-C-glucoside (1) has a better absorption capability. The aim of this study was to evaluate the antioxidant and anti-inflammatory activity of this glucoside, as well as the respective hexa-acetate derivative 1a and the hexa-ethyl carbonate derivative 1b since the inclusion of moieties in bioactive molecules may increase or modify their biological effects. Methods: THP-1 macrophages were used to determine the viability in the presence of chrysin derivatives, and non-cytotoxic concentrations were selected. Subsequently, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) production and inflammatory mediators were examined. The involvement of chrysin derivatives with the Keap1 and Nrf2 antioxidant system was determined by docking and Western blotting studies. Results: Our data demonstrated, for the first time, that pretreatment with the three compounds caused a significant reduction in LPS-induced reactive oxygen species (ROS) production and pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 1ß (IL-1ß) levels, as well as in cyclooxygenase 2 (COX-2) expression. The mechanisms underlying these protective effects were related, at least in part, to the competitive molecular interactions of these phenolic compounds with Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2), which would allow the dissociation of Nrf2 and its translocation into the nucleus and the subsequent up-regulation of hemo-oxygenase 1 (HO-1) expression. Conclusions: Compared to the 8-C-glucoside parent chrysin, compound 1a exhibited the strongest antioxidant and anti-inflammatory activity. We hypothesized that the incorporation of an acetate group (1a) may reduce its polarity and, thus, increase membrane permeability, leading to better pharmacological activity. These findings support the potential use of these phenolic compounds as Nrf2 activators against oxidative-stress-related inflammatory diseases.
RESUMEN
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against renal fibrosis and the underlying mechanisms are still poorly understood. Given that many actions of ISO could be similarly attained by hydrogen sulfide (H2S), we speculated that ISO may work through the induction of endogenous H2S. To test the hypothesis, we established the unilateral ureteral obstruction (UUO) renal fibrosis rat model and transforming growth factor-ß1(TGF-ß1)-induced fibrosis in cultured renal tubular cells. ISO treatment inhibited epithelial-mesenchymal transition (EMT) formation, decreased extracellular matrix (ECM) deposition, and relieved renal fibrosis. Further analysis revealed that ISO stimulated the expression of the H2S-synthesizing enzyme cystathionine lyase (CSE) and cystathionine beta-synthase (CBS), and promoted H2S production in vivo and in vitro. The elevated H2S attenuated oxidative stress and elevated the thiol level. It induced Keap1 sulfhydration, disrupted Keap1-Nrf2 interaction, and promoted the entry of Nrf2 into the nucleus. Finally, we found that circulating H2S mainly derived from the liver, and not the kidney. Collectively, our study revealed that ISO alleviated renal fibrosis by inducing endogenous H2S and regulating Keap1-Nrf2 interaction through sulfhydration of Keap1. Endogenous H2S could be an important mediator underlying the pharmacological actions of ISO. Due to the multifunctional properties of H2S, the H2S-inducing nature of ISO could be exploited to treat various diseases.
Asunto(s)
Fibrosis , Sulfuro de Hidrógeno , Quercetina , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Quercetina/farmacología , Quercetina/análogos & derivados , Quercetina/química , Ratas , Fibrosis/tratamiento farmacológico , Masculino , Oxidación-Reducción/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/patología , Compuestos de Sulfhidrilo/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Cistationina betasintasa/metabolismoRESUMEN
Dry eye, the most common ocular surface disease, can cause ocular surface tissue damage and discomfort symptoms and seriously affect people's quality of life. The etiology of dry eye is diverse, and its pathogenesis is complex. The oxidative stress reaction is considered to be among the important factors in the pathogenesis of dry eye. Therefore, activating the antioxidant system has a potential therapeutic effect on dry eye. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is considered the most important antioxidant pathway in the body. The activation of the Nrf2 signaling pathway and its interaction with other pathways are important mechanisms to prevent the occurrence and development of dry eye. This review describes the structure and function of Nrf2, summarizes the changes in the oxidative stress response in dry eye, focuses on the potential mechanism of the Nrf2 signaling pathway in the treatment of dry eye, and, finally, summarizes the drugs that activate the Nrf2 signaling pathway in the treatment of dry eye.
RESUMEN
In recent years, the health benefits of lactic acid bacteria have garnered attention, but their antioxidant activity remains relatively underexplored. We have been analyzing the antioxidant activities of various dietary phytochemicals by assessing their ability to mitigate oxidative stressor-induced toxicity in zebrafish larvae through pretreatment. In this study, the antioxidant activities of 24 strains of heat-killed lactic acid bacteria from various origins were examined using this zebrafish assay system. The results revealed that all 24 strains possessed antioxidant activity that reduces hydrogen peroxide toxicity. Further detailed analysis using the H61 strain, which exhibited the strongest activity, showed that no direct antioxidant activity was observed in the assay system, suggesting that the detected antioxidant activity was entirely indirect. Moreover, it was found that pretreatment of zebrafish larvae with the H61 strain for more than 6 h was required to exert its antioxidant activity. This duration was similar to that required by dietary antioxidants that activate the Keap1-Nrf2 pathway, suggesting potential involvement of this pathway. However, analysis using Nrf2-knockout zebrafish revealed that the antioxidant activity of strain H61 is independent of Nrf2, indicating that it represents a novel indirect antioxidant activity that does not involve the Keap1-Nrf2 pathway. To further characterize this activity, the ability to mitigate the toxicity of oxidative stressors other than hydrogen peroxide was examined. The results indicated that while the toxicity of tert-butyl hydroperoxide was reduced, unlike with the Keap1-Nrf2 pathway, it was not effective in counteracting the toxicity of paraquat or arsenite, which generate superoxide radicals. In conclusion, we have identified a novel indirect antioxidant activity in lactic acid bacteria.
Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Lactobacillales , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Pez Cebra , Animales , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Lactobacillales/metabolismo , Larva/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
OBJECTIVE: This study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury. METHODS: Mouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally. RESULTS: Compared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7. CONCLUSION: Sulforaphane alleviated AngII-induced podocyte oxidative stress injury via the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.
Asunto(s)
Angiotensina II , Hemo-Oxigenasa 1 , Isotiocianatos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Podocitos , Especies Reactivas de Oxígeno , Transducción de Señal , Sulfóxidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratones , Sulfóxidos/farmacología , Hemo-Oxigenasa 1/metabolismo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Angiotensina II/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Antioxidantes/farmacologíaRESUMEN
Endometritis is a common inflammatory condition of the uterine endometrial lining that primarily affects perinatal dairy animals and causes significant economic losses in agriculture. It is usually triggered by pathogenic bacteria and is associated with chronic postpartum reproductive tract infections. Bacterial lipopolysaccharides (LPSs) are known to increase levels of reactive oxygen species (ROS), leading to oxidative stress and inflammation through the activation of the NF-κB signaling pathway and the inhibition of Nrf2 nuclear translocation, which regulates antioxidant response elements (AREs). The effectiveness of the conventional management strategy involving antibiotics is decreasing due to resistance and residual concerns. This review explores the potential therapeutic benefits of targeting the Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/NF-κB signaling pathway to alleviate LPS-induced endometritis. We discuss recent advancements in veterinary medicine that utilize exogenous antioxidants to modulate these pathways, thereby reducing oxidative stress and inflammatory responses in endometrial cells. This review highlights the efficacy of several bioactive compounds that enhance Nrf2 signaling and suppress NF-κB activation, offering protective effects against oxidative damage and inflammation. By examining various in vitro studies, this review emphasizes the emerging role of these signaling pathways in developing new therapeutic strategies that could potentially replace or supplement traditional treatments and mitigate the economic impacts of endometritis in livestock.
Asunto(s)
Endometritis , Proteína 1 Asociada A ECH Tipo Kelch , Lipopolisacáridos , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Endometritis/tratamiento farmacológico , Endometritis/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , FN-kappa B/metabolismo , Animales , Femenino , Lipopolisacáridos/efectos adversos , Transducción de Señal/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéuticoRESUMEN
There is growing evidence that the body's energy expenditures constitute a significant risk factor for the development of most deadly diseases, including cancer. Our aim was to investigate the impact of basal metabolic rate (BMR) on the growth and progression of colorectal cancer (CRC). To do so, we used a unique model consisting of three lines of laboratory mice (Mus musculus) artificially selected for high (HBMR) and low (LBMR) basal metabolic rate and randomly bred individuals (non-selected, NSBMR). The experimental individuals were implanted with human colorectal cancer cells DLD-1. The variation in BMR between the lines allowed for testing the impact of whole-body metabolism on oxidative and antioxidant parameters in the liver throughout the cancerogenesis process. We investigated the dependence between metabolic values, reactive oxygen species (ROS) levels, and Kelch-like ECH-associated protein 1-based E3 ligase complexes (Keap1) gene activity in these animals. We found that the HBMR strain had a higher concentration of oxidative enzymes compared to the LBMR and NSBMR. Furthermore, the growth rate of CRC tumors was associated with alterations in the levels of oxidative stress enzymes and Keap1 expression in animals with a high metabolic rate. Our results indicate that a faster growth and development of CRC line DLD-1 is associated with enzymatic redox imbalance in animals with a high BMR.
Asunto(s)
Neoplasias Colorrectales , Proteína 1 Asociada A ECH Tipo Kelch , Estrés Oxidativo , Especies Reactivas de Oxígeno , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/etiología , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Metabolismo Basal , Línea Celular Tumoral , MasculinoRESUMEN
Lung ischemia-reperfusion injury (LIRI) causes oxidative stress, inflammation, and immune system activation. The Nrf2/Keap1/HO-1 pathway is important in cellular defense against these effects. Quercetin, a flavonoid with antioxidant, anti-inflammatory, and anti-cancer properties, has been investigated. Our aim in this study was to investigate the effect of quercetin on preventing lung ischemia-reperfusion injury and the role of the Nrf2/Keap1/HO-1 pathway. Sixty-four male Wistar rats were divided into four distinct groups(n = 16). Sham, lung ischemia-reperfusion (LIR), Saline + LIR, Quercetin + LIR (30 mg/kg i.p for a week before LIR). LIR groups were subjected to 60 min of ischemia (left pulmonary artery, vein, and bronchus) and 120 min of reperfusion. Our assessment encompassed a comprehensive analysis of various factors, including the evaluation of expression Nrf2, Keap1, and Heme Oxygenase-1 (HO-1) levels and NF-κB protein. Furthermore, we examined markers related to inflammation (interleukin-1ß and tumor necrosis factor alpha), oxidative stress (malondialdehyde, total oxidant status, superoxide dismutase, glutathione peroxidase, total antioxidant capacity), lung edema (Wet/dry lung weight ratio and total protein concentration), apoptosis (Bax and Bcl2 protein), and histopathological alterations (intra-alveolar edema, alveolar hemorrhage, and neutrophil infiltration). Our results show that ischemia-reperfusion results in heightened inflammation, oxidative stress, apoptosis, lung edema, and histopathological damage. Quercetin showed preventive effects by reducing these markers, acting through modulation of the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway. This anti-inflammatory effect, complementary to the antioxidant effects of quercetin, provides a multifaceted approach to cell protection that is important for developing therapeutic strategies against ischemia-reperfusion injury and could be helpful in preventive strategies against ischemia-reperfusion.
Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Quercetina , Daño por Reperfusión , Animales , Masculino , Ratas , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacosRESUMEN
CONTEXT: Kelch-like ECH-associated protein 1 (KEAP1) is associated with nuclear factor erythroid-2 related factor 2 (NRF2) and promotes NRF2 degradation in normal conditions. Genetic abnormality in KEAP1 is a rare disease and presents with familial multinodular goiter. OBJECTIVE: This study assessed the clinical and molecular findings concerning nodular formation in the thyroid gland of patients harboring KEAP1 germline mutations. METHODS: Next-generation sequencing analysis targeting goiter-associated genes was performed on 39 patients with familial multinodular goiter. The expression of NRF2-targeted genes from surgical thyroid specimens of patients with KEAP1 mutations were analyzed using a whole transcript expression array and immunohistochemistry. RESULTS: We found five probands with pathogenic heterozygous mutations in KEAP1 (p.Q86*, p.L136P, p.V411fs, p.R415C, and p.R483H), which had no meaningful concomitance with mutations of other goiter-associated genes in germline and somatic levels. Their common histopathological features showed multinodular goiters in the entire thyroid gland with few degenerative lesions or complications of malignancy and slow proliferation indicating < 1% at the Ki-67 labeling index. Among 42 NRF2-targeted genes, antioxidant genes were most frequently upregulated (11/12) in the nodule, followed by detoxification genes (6/11). Immunohistochemical analysis showed relatively high expression of glutathione peroxidase 2 and NAD(P)H quinone oxidoreductase 1 (representative NRF2-targeted genes) in the nodules of various patients harboring KEAP1 mutations. CONCLUSION: KEAP1 germline heterozygous mutations exert excessive NRF2 activity in the thyroid gland and may confer cytoprotective effects even under abundant reactive oxygen species associated with thyroid hormone production, resulting in thyroid hyperplasia with scarce degradation.
RESUMEN
GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway. We measured GAD67 expression levels in insomnia patients and evaluated the expression levels of GAD67 and Keap1/Nrf2/Parkin/PINK1-related cytokines following GAD67 lentiviral transfection in PC12 cells and in rat models. We also assessed cellular reactive oxygen species (ROS) and mitochondrial membrane potential levels. Additionally, EEG/EMG was used to analyse the sleep phases of rats and to assess memory and exploration functions. Pathological changes and the expression of GAD67 and sleep-related proteins in the hippocampus were examined. The results showed that GAD67 expression was increased in insomnia patients, ROS levels were elevated, and the mitochondrial membrane potential was decreased in the GAD67-KD group. Insomnia rats exhibited changes in sleep rhythm, learning, and exploration dysfunction, pathological changes in the CA1 region of the hippocampus, and differential expression of GAD67 and sleep-related factors. Inhibitory neurofactor expression levels were decreased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Conversely, excitatory factor expression levels were increased in insomnia rats, showing a positive correlation in the GAD67-KD group and a negative correlation in the GAD67-OE group. Senegenin intervention modulated cytokine expression levels. In conclusion, GAD67 negatively regulates insomnia, and senegenin can regulate insomnia by mediating the expression of cytokines in the GAD67-regulated Keap1/Nrf2/Parkin/PINK1 pathway.