Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Dev Cell ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121855

RESUMEN

The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.

2.
Toxicol Sci ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964340

RESUMEN

Pharmaceutical drugs and other chemicals can impact organogenesis, either during pregnancy or by postnatal exposure of very preterm infants. Corticosteroids are administered to pregnant women at risk of preterm delivery in order to reduce neonatal morbidity and mortality. In addition, high-dose corticosteroid exposure of very preterm infants regularly serves to maintain blood pressure and to prevent and treat bronchopulmonary dysplasia, a form of chronic lung disease in prematurely born infants. Despite clinical benefits, there is increasing evidence of corticosteroid-mediated short- and long-term detrimental developmental effects, especially in the kidney. Here, we performed a detailed morphological and functional analysis of corticosteroid-mediated effects on pronephros development in larval zebrafish. 24 hours post fertilization (hpf) transgenic Tg(wt1b: EGFP) zebrafish larvae were exposed to a set of natural and synthetic corticosteroids (hydrocortisone, dexamethasone, 6α-methylprednisolone, betamethasone, prednisolone, fludrocortisone, 11-deoxycorticosterone) with varying glucocorticoid and mineralocorticoid potency for 24 hours at different concentrations. A semi-automated, multiparametric in vivo workflow enabled simultaneous assessment of kidney morphology, renal FITC-inulin clearance, and heart rate within the same larva. All corticosteroids exerted significant morphological and functional effects on pronephros development, including a significant hypertrophy of the pronephric glomeruli as well as dose-dependent increases in FITC-inulin clearance as a marker of glomerular filtration rate. In conclusion, the present study demonstrates a significant impact of corticosteroid exposure on kidney development and function in larval zebrafish. Hence, these studies underline that corticosteroid exposure of the fetus and the preterm neonate should be carefully considered due to potential short- and long-term harm to the kidney.

3.
Methods Mol Biol ; 2805: 171-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008182

RESUMEN

Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.


Asunto(s)
Riñón , Animales , Ratones , Riñón/embriología , Riñón/citología , Fenómenos Biomecánicos , Organogénesis , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología
4.
Genes Dev ; 38(9-10): 393-414, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38834239

RESUMEN

The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.


Asunto(s)
Endocitosis , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Animales , Mesodermo/embriología , Mesodermo/metabolismo , Transducción de Señal/genética , Endocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Desarrollo Embrionario/genética , Transporte de Proteínas , Mutación
5.
Biochem Biophys Res Commun ; 722: 150155, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795454

RESUMEN

Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Riñón , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Riñón/metabolismo , Riñón/embriología , Riñón/crecimiento & desarrollo , Ratones , Macaca fascicularis , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Matrix Biol ; 131: 30-45, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788809

RESUMEN

Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice. The results show that the short ColXVIII isoform predominates in the early epithelialized nephron structures whereas the two longer isoforms are expressed only in the later phases of glomerular formation. Meanwhile, electron microscopy showed that the ColXVIII mutant embryonic kidneys have ultrastructural defects at least from embryonic day 16.5 onwards. Similar structural defects had previously been observed in adult ColXVIII-deficient mice, indicating a congenital origin. The lack of ColXVIII led to a reduced NPC population in which changes in NPC proliferation and maintenance and in macrophage influx were perceived to play a role. The changes in NPC behavior in turn led to notably reduced overall nephron formation. In conclusion, the results show that ColXVIII has multiple roles in renal development, both in ureteric branching and in NPC behavior.


Asunto(s)
Matriz Extracelular , Ratones Noqueados , Nefronas , Células Madre , Animales , Nefronas/metabolismo , Nefronas/citología , Nefronas/crecimiento & desarrollo , Ratones , Matriz Extracelular/metabolismo , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Colágeno/metabolismo , Colágeno/genética
7.
Pflugers Arch ; 476(6): 963-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563997

RESUMEN

Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.


Asunto(s)
Fibronectinas , Riñón , Animales , Fibronectinas/metabolismo , Fibronectinas/genética , Ratones , Humanos , Riñón/metabolismo , Riñón/embriología , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proliferación Celular , Integrinas/metabolismo , Integrinas/genética , Ratones Endogámicos C57BL , Matriz Extracelular/metabolismo , Cadenas alfa de Integrinas
8.
Kidney Int ; 105(6): 1186-1199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554991

RESUMEN

The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.


Asunto(s)
Linaje de la Célula , Riñón , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Animales , Humanos , Riñón/citología , Diferenciación Celular , Sistemas CRISPR-Cas , Rastreo Celular/métodos , Elementos Transponibles de ADN/genética
9.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496522

RESUMEN

The kidney functions as a finely tuned sensor to balance body fluid composition and filter out waste through complex coordinated mechanisms. This versatility requires tight neural control, with innervating efferent nerves playing a crucial role in regulating blood flow, glomerular filtration rate, water and sodium reabsorption, and renin release. In turn sensory afferents provide feedback to the central nervous system for the modulation of cardiovascular function. However, the cells targeted by sensory afferents and the physiological sensing mechanisms remain poorly characterized. Moreover, how the kidney is innervated during development to establish these functions remains elusive. Here, we utilized a combination of light-sheet and confocal microscopy to generate anatomical maps of kidney sensory and sympathetic nerves throughout development and resolve the establishment of functional crosstalk. Our analyses revealed that kidney innervation initiates at embryonic day (E)13.5 as the nerves associate with vascular smooth muscle cells and follow arterial differentiation. By E17.5 axonal projections associate with kidney structures such as glomeruli and tubules and the network continues to expand postnatally. These nerves are synapsin I-positive, highlighting ongoing axonogenesis and the potential for functional crosstalk. We show that sensory and sympathetic nerves innervate the kidney concomitantly and classify the sensory fibers as calcitonin gene related peptide (CGRP)+, substance P+, TRPV1+, and PIEZO2+, establishing the presence of PIEZO2 mechanosensory fibers in the kidney. Using retrograde tracing, we identified the primary dorsal root ganglia, T10-L2, from which PIEZO2+ sensory afferents project to the kidney. Taken together our findings elucidate the temporality of kidney innervation and resolve the identity of kidney sympathetic and sensory nerves.

10.
Dev Cell ; 59(5): 595-612.e8, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38340720

RESUMEN

During kidney development, nephron epithelia arise de novo from fate-committed mesenchymal progenitors through a mesenchymal-to-epithelial transition (MET). Downstream of fate specification, transcriptional mechanisms that drive establishment of epithelial morphology are poorly understood. We used human iPSC-derived renal organoids, which recapitulate nephrogenesis, to investigate mechanisms controlling renal MET. Multi-ome profiling via snRNA-seq and ATAC-seq of organoids identified dynamic changes in gene expression and chromatin accessibility driven by activators and repressors throughout MET. CRISPR interference identified that paired box 8 (PAX8) is essential for initiation of MET in human renal organoids, contrary to in vivo mouse studies, likely by activating a cell-adhesion program. While Wnt/ß-catenin signaling specifies nephron fate, we find that it must be attenuated to allow hepatocyte nuclear factor 1-beta (HNF1B) and TEA-domain (TEAD) transcription factors to drive completion of MET. These results identify the interplay between fate commitment and morphogenesis in the developing human kidney, with implications for understanding both developmental kidney diseases and aberrant epithelial plasticity following adult renal tubular injury.


Asunto(s)
Riñón , Nefronas , Humanos , Ratones , Animales , Riñón/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Transducción de Señal , Transición Epitelial-Mesenquimal
11.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405698

RESUMEN

The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.

12.
Biomedicines ; 12(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38397998

RESUMEN

The aim of this study is to investigate the role of the ADAMTS18 gene in regulating the renal development of mice. PAS staining was used to observe the kidney development of E12.5-E17.5 mice, while immunofluorescence staining and RT-PCR were used to observe the expression of ADAMTS18. Ureteric bud (UB) branches were observed using immunofluorescence staining using the UB marker E-cadherin, and the apoptosis and proliferation of posterior renal mesenchymal cells were analyzed using TUNEL and PH3 fluorescence staining. Flow cytometry was used to analyze the immune cell infiltration, and western blotting (WB) was used to analyze the expression of PD-1/PD-L1 and CTLA-4. As a result, the ADAMTS18 gene expression gradually increased as the kidney continued to mature during embryonic development. Compared with that in the control and vector groups, UB branching was significantly reduced in the ADAMTS18 deletion group (p < 0.05), but that deletion of ADAMTS18 did not affect posterior renal mesenchymal cell proliferation or apoptosis (p > 0.05). Compared with those in the control and vector groups, the proportion of embryonic kidney B cells and the proportion of CD8+ cells were significantly greater after ADAMTS18 was knocked down (p < 0.05), but the difference in neutrophil counts was not significant (p > 0.05). The WB analysis revealed that the PD-1/PD-L1 and CTLA-4 expression was significantly increased after ADAMTS18 was knocked down (p < 0.05). In conclusion, the ADAMTS18 gene may be involved in mice kidney development by regulating the immune microenvironment and activating immune checkpoints. Deletion of the ADAMTS18 gene may be unfavorable for kidney development.

13.
Am J Physiol Renal Physiol ; 326(1): F3-F19, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916284

RESUMEN

In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Genes del Tumor de Wilms , Proteínas WT1/genética , Proteínas WT1/metabolismo , Riñón/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Mutación , Neoplasias Renales/genética , Neoplasias Renales/metabolismo
14.
Can J Kidney Health Dis ; 10: 20543581231212038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107159

RESUMEN

Purpose of review: Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information: PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods: A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings: SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations: Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.


Contexte motivant la revue: Plusieurs méta-analyses d'envergure portant sur des études d'association pangénomiques ont permis d'identifier de manière fiable une association entre des variants génétiques du gène SHROOM3 et l'insuffisance rénale chronique. Cette association s'étend aux altérations des marqueurs connus de l'insuffisance rénale, notamment le débit de filtration glomérulaire estimé initial, le rapport albumine/créatinine urinaire et le taux d'urée dans le sang. Pourtant, la compréhension des mécanismes moléculaires qui sous-tendent cette association entre SHROOM3 et l'insuffisance rénale reste mal communiquée. Nous avons procédé à une revue narrative afin de résumer l'état actuel de la littérature en ce qui concerne les relations génétiques et moléculaires entre SHROOM3 et le développement des reins et de l'insuffisance rénale. Sources: Les bases de données PubMed, PubMed Central, SCOPUS et Web of Science. L'examen des références des études pertinentes et des recherches indépendantes sur Google Scholar a également été réalisé pour combler les lacunes dans les connaissances. Méthodologie: Une revue narrative complète a été effectuée afin d'explorer les mécanismes moléculaires qui sous-tendent SHROOM3, le développement des reins, la fonction rénale et l'insuffisance rénale. Principaux résultats: SHROOM3 est une protéine unique puisqu'elle est la seule du groupe de protéines SHROOM à réguler la dynamique de l'actine par la constriction apicale et l'élongation des cellules apico-basales. SHROOM3 joue un rôle dichotomique dans le rein; de subtiles altérations de son expression et de sa fonction pouvant à la fois être pathologiques ou protectrices en contexte d'insuffisance rénale. Des études d'association pangénomiques ont permis d'identifier des variants génétiques associés à l'insuffisance rénale chronique près du site d'initiation de la transcription du gène SHROOM3. SHROOM3 semble également protéger la structure et la fonction des glomérules dans des contextes comme la glomérulosclérose segmentaire focale. On en sait toutefois peu sur les mécanismes précis qui entraînent cette protection; les partenaires de liaison de SHROOM3 demeurent par conséquent d'intéressantes avenues pour une étude plus approfondie. Limites: Notre recherche était limitée aux articles rédigés en anglais. Les études pertinentes n'ont pas fait l'objet d'une évaluation structurée de leur qualité. Un biais de sélection des articles inclus peut s'être produit. Bien que nous discutions des orientations et des possibilités futures, cette revue narrative reflète les points de vue académiques des auteurs.

15.
J Dev Orig Health Dis ; 14(5): 559-569, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37969035

RESUMEN

The effect of smoking and nicotine exposure during pregnancy on fetal nephrogenesis is a growing area of research. The objective of this systematic review is to summarise the current evidence in this research field. Our literature search identified a total of 415 articles from PubMed, Embase, Scopus, and Cochrane. After electronic sorting and manual screening, 18 eligible articles were found, 6 being human studies and 12 being animal studies. Articles that did not study nicotine or smoking, did not focus on fetal kidney development, or did not include nicotine or smoking exposure during pregnancy were excluded from the systematic review. The main outcomes of the studies were kidney weight, volume and size, kidney histopathology and morphology, and kidney function. Evidence from human studies identified a reduction in fetal kidney size, volume, and weight in offspring exposed to smoking during pregnancy; and the greatest impact was seen in offspring exposed to >5-10 cigarettes per day. Animal studies investigated kidney histopathology and highlighted kidney injury and microscopic changes in response to nicotine exposure during pregnancy. Further research is required to determine the impact on kidney function. Recreational nicotine use is evolving, and with the increasing use of urine cotinine in the evaluation of nicotine exposure, further research is needed.


Asunto(s)
Nicotina , Fumar , Embarazo , Femenino , Animales , Humanos , Fumar/efectos adversos , Nicotina/toxicidad , Cotinina , Atención Prenatal , Feto
16.
Mol Nutr Food Res ; 67(24): e2300318, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37888862

RESUMEN

SCOPE: Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS: UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION: SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.


Asunto(s)
Fórmulas Infantiles , Recien Nacido Prematuro , Lactante , Humanos , Recién Nacido , Animales , Porcinos , Animales Recién Nacidos , Temperatura , Inflamación , Riñón
17.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37818607

RESUMEN

The intricate vascular system of the kidneys supports body fluid and organ homeostasis. However, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood. Netrin 1 (Ntn1) is a secreted ligand that is crucial for vessel and neuronal guidance. Here, we demonstrate that Ntn1 is expressed by Foxd1+ stromal progenitors in the developing mouse kidney and conditional deletion (Foxd1GC/+;Ntn1fl/fl) results in hypoplastic kidneys with extended nephrogenesis. Wholemount 3D analyses additionally revealed the loss of a predictable vascular pattern in Foxd1GC/+;Ntn1fl/fl kidneys. As vascular patterning has been linked to vessel maturity, we investigated arterialization. Quantification of the CD31+ endothelium at E15.5 revealed no differences in metrics such as the number of branches or branch points, whereas the arterial vascular smooth muscle metrics were significantly reduced at both E15.5 and P0. In support of our observed phenotypes, whole kidney RNA-seq revealed disruptions to genes and programs associated with stromal cells, vasculature and differentiating nephrons. Together, our findings highlight the significance of Ntn1 to proper vascularization and kidney development.


Asunto(s)
Riñón , Nefronas , Animales , Ratones , Netrina-1/genética , Fenotipo
18.
Dis Model Mech ; 16(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815464

RESUMEN

Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.


Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Neoplasias Renales/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
19.
Noncoding RNA Res ; 8(4): 593-601, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37680850

RESUMEN

MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that typically consist of 19-25 nucleotides in length. These molecules function as essential regulators of gene expression by selectively binding to complementary target sequences within messenger RNA (mRNA) molecules, consequently exerting a negative impact on gene expression at the post-transcriptional level. By modulating the stability and translation efficiency of target mRNAs, miRNAs play pivotal roles in diverse biological processes, including the intricate orchestration of organ development. Among these processes, the development of the kidney has emerged as a key area of interest regarding miRNA function. Intriguingly, recent investigations have uncovered a subset of miRNAs that exhibit remarkably high expression levels in the kidney, signifying their close association with kidney development and diseases affecting this vital organ. This growing body of evidence strongly suggests that miRNAs serve as crucial regulators, actively shaping both the physiological processes governing kidney function and the pathological events leading to renal disorders. This comprehensive review aims to provide an up-to-date overview of the latest research progress regarding miRNAs and their involvement in kidney development. By examining the intricate interplay between miRNAs and the molecular pathways driving kidney development, this review seeks to elucidate the underlying mechanisms through which miRNAs exert their regulatory functions. Furthermore, an in-depth exploration of the role played by miRNAs in the occurrence and progression of renal dysplasia will be presented. Renal dysplasia represents a significant developmental anomaly characterized by abnormal kidney tissue formation, and miRNAs have emerged as key players in this pathological process. By shedding light on the intricate network of miRNA-mediated regulatory mechanisms involved in kidney dysplasia, this review aims to provide valuable insights for the diagnosis and research of diseases associated with aberrant kidney development.

20.
Pediatr Nephrol ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775581

RESUMEN

Extracellular vesicles (EVs) are membranous cargo particles that mediate intercellular communication. They are heterogeneous in size and mechanism of release, and found in all biological fluids. Since EV content is in relation to the originating cell type and to its physiopathological conditions, EVs are under study to understand organ physiology and pathology. In addition, EV surface cargo, or corona, can be influenced by the microenvironment, leading to the concept that EV-associated molecules can represent useful biomarkers for diseases. Recent studies also focus on the use of natural, engineered, or synthetic EVs for therapeutic purposes. This review highlights the role of EVs in kidney development, pediatric kidney diseases, including inherited disorders, and kidney transplantation. Although few studies exist, they have promising results and may guide researchers in this field. Main limitations, including the influence of age on EV analyses, are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...