Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
BMC Biotechnol ; 24(1): 73, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367307

RESUMEN

BACKGROUND: Biotransformation of steroid compounds into therapeutic products using microorganisms offers an eco-friendly and economically sustainable approach to the pharmaceutical industry rather than a chemical synthesis way. The biotransformation efficiency of progesterone into the anticancer compound testololactone using Penicillium chrysogenum Ras3009 has been investigated. Besides, maximization of testololactone formation was achieved by studying the kinetic modelling and impact of some fermentation conditions on the biotransformation process. RESULTS: The fungal strain Ras3009 was selected among twelve fungal strains as the most runner for the transformation of 81.18% of progesterone into testololactone. Ras3009 was identified phenotypically and genotypically as Penicillium chrysogenum, its 18 S rRNA nucleotide sequence was deposited in the GenBank database by the accession number OR480104. Studying the impact of fermentation conditions on biotransformation efficiency indicated a positive correlation between substrate concentration and testololactone formation until reaching the maximum velocity vmax. Kinetic studies revealed that vmax was [Formula: see text] gL- 1hr- 1 with high accuracy, giving R2 of 0.977. The progesterone transformation efficiency generally increased with time, reaching a maximum of 100% at 42 h with testololactone yield (Ypt/s) 0.8700 mg/mg. Moreover, the study indicated that the enzymatic conversion by P. chrysogenum Ras3009 showed high affinity to the substrate, intracellularly expressed, and released during cell disruption, leading to higher efficiency when using whole microbial cell extract. CONCLUSIONS: Fungi can be promising biocatalysts for steroid transformation into valuable chemicals and pharmaceutical compounds. The study revealed that the new fungal isolate P. chrysogenum Ras3009 possesses a great catalytic ability to convert progesterone into testololactone. Kinetic modelling analysis and optimization of the fermentation conditions lead to higher transformation efficiency and provide a better understanding of the transformation processes.


Asunto(s)
Antineoplásicos , Biotransformación , Penicillium chrysogenum , Progesterona , Progesterona/metabolismo , Penicillium chrysogenum/metabolismo , Penicillium chrysogenum/genética , Cinética , Antineoplásicos/metabolismo , Fermentación
2.
Environ Sci Pollut Res Int ; 31(43): 55222-55238, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39225925

RESUMEN

The removal kinetics of an aqueous mixture of thirteen antibiotics (i.e., ampicillin, cefuroxime, ciprofloxacin, flumequine, metronidazole, ofloxacin, oxytetracycline, sulfadimethoxine, sulfamethoxazole, sulfamethazine, tetracycline, trimethoprim and tylosin) by batch UVC and UVC/H2O2 processes has been modeled in this work. First, molar absorption coefficients (ε), direct quantum yields (Φ) and the rate constants of the reaction of antibiotics with hydroxyl radical (kHO•) (model inputs) were determined for each antibiotic and compared with literature data. The values of these parameters range from 0.3 to 21.8 mM-1 cm-1 for ε, < 0.01 to 67.8 mmol·E-1 for Φ and 3.8 × 109 to 1.7 × 1010 M-1 s-1 for kHO•. Second, a regression model was developed to compute the rate constants of the reactions of the antibiotics with singlet oxygen (k1O2) from experimental data obtained in batch UVC experiments treating a mixture of the antibiotics. k1O2 values in the 1-50 × 106 M-1 s-1 range were obtained for the antibiotics studied. Finally, a semi-empirical kinetic model comprising a set of ordinary differential equations was solved to simulate the evolution of the residual concentration of antibiotics and hydrogen peroxide (model outputs) in a completely mixed batch photoreactor. Model predictions were reasonably consistent with the experimental data. The kinetic model developed might be combined with computational fluid dynamics to predict process performance and energy consumption in UVC and UVC/H2O2 applications at full scale.


Asunto(s)
Antibacterianos , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua , Antibacterianos/química , Peróxido de Hidrógeno/química , Cinética , Contaminantes Químicos del Agua/química
3.
Phys Med Biol ; 69(20)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39317237

RESUMEN

Subcutaneous microbubble administration in connection with contrast enhanced ultrasound (CEUS) imaging is showing promise as a noninvasive and sensitive way to detect tumor draining sentinel lymph nodes (SLNs) in patients with breast cancer. Moreover, there is potential to harness the results from these approaches to directly estimate cancer burden, since some microbubble formulas, such as the Sonazoid used in this study, are rapidly phagocytosed by macrophages, and the macrophage concentration in a lymph node is inversely related to the cancer burden. This work presents a mathematical model that can approximate a rate constant governing macrophage uptake of Sonazoid,ki, given dynamic CEUS Sonazoid imaging data. Twelve healthy women were injected with 1.0 ml of Sonazoid in an upper-outer quadrant of one of their breasts and SLNs were imaged in each patient immediately after injection, and then at 0.25, 0.5, 1, 2, 4, 6, and 24 h after injection. The mathematical model developed was fit to the dynamic CEUS data from each subject resulting in a mean ± sd of 0.006 ± 0.005 h-1and 0.4 ± 0.1 h-1for relative lymphatic flow (EFl) andki, respectively. Furthermore, the roughly 25% sd of thekimeasurement was similar to the sd that would be expected from realistic noise simulations for a stable 0.4 h-1value ofki, suggesting that macrophage concentration is highly consistent among cancer-free SLNs. These results, along with the significantly smaller variance inkimeasurement observed compared to relative lymphatic flow suggest thatkimay be a more precise and promising approach of estimating macrophage abundance, and inversely cancer burden. Future studies comparing tumor-free to tumor-bearing nodes are planned to verify this hypothesis.


Asunto(s)
Compuestos Férricos , Hierro , Macrófagos , Óxidos , Humanos , Macrófagos/metabolismo , Femenino , Hierro/metabolismo , Óxidos/farmacocinética , Compuestos Férricos/metabolismo , Compuestos Férricos/farmacocinética , Adulto , Ultrasonografía Mamaria/métodos , Persona de Mediana Edad , Mama/diagnóstico por imagen , Mama/metabolismo , Voluntarios Sanos , Medios de Contraste , Transporte Biológico
4.
Artículo en Inglés | MEDLINE | ID: mdl-39256215

RESUMEN

AIM: The recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM). METHODOLOGY: 50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model. RESULTS: No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively). CONCLUSIONS: Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.

5.
J Sci Food Agric ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299926

RESUMEN

BACKGROUND: Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) and α-aminoadipic acid (AAA) are important foodborne hazards and their intake can cause a variety of diseases in humans. It is extremely important to investigate the formation mechanism of CML, CEL and AAA, as well as their association with each other when aiming to control their production. RESULTS: A multi-response kinetic model was developed within the glucose-lysine Maillard reaction model system. The concentrations of glucose, lysine, glyoxal (GO), methylglyoxal (MGO), CML, CEL and AAA were quantified at different temperature (100-160 °C) and at different intervals (0-60 min). The experimental data were fitted to the proposed model to calculate kinetic parameters for the corresponding steps. The results indicated that the production of CML was primarily relied on the direct oxidative cleavage of the Amadori product, rather than the reaction between GO and Lys, whereas CEL and AAA were generated through the reaction of MGO with Lys. Significantly, the reaction between α-dicarbonyl compounds and Lys preferentially generated CML and CEL, resulting in the lower concentrations of AAA compared to CML and CEL. CONCLUSION: The multi-response kinetic model developed in the present study can be applied well to the Maillard reaction. The relationship between the formation mechanisms of CML, CEL and AAA is also explained. © 2024 Society of Chemical Industry.

6.
Neuroimage ; 300: 120873, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341474

RESUMEN

Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.

7.
Diagnostics (Basel) ; 14(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125466

RESUMEN

The accurate estimation of the tracer arterial blood concentration is crucial for reliable quantitative kinetic analysis in PET. In the current work, we demonstrate the automatic extraction of an image-derived input function (IDIF) from a CT AI-based aorta segmentation subsequently resliced to a dynamic PET series acquired on a Siemens Vision Quadra long-axial field of view scanner in 10 human subjects scanned with [15O]H2O. We demonstrate that the extracted IDIF is quantitative and in excellent agreement with a delay- and dispersion-corrected sampled arterial input function (AIF). Perfusion maps in the brain are calculated and compared from the IDIF and AIF, respectively, showed a high degree of correlation. The results demonstrate the possibility of defining a quantitatively correct IDIF compared with AIFs from the new-generation high-sensitivity and high-time-resolution long-axial field-of-view PET/CT scanners.

8.
Part Fibre Toxicol ; 21(1): 33, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143599

RESUMEN

BACKGROUND: Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation. The aim of the present study was therefore to acquire two comparable datasets to parametrize a physiologically-based kinetic model. METHOD: Rats were exposed to cerium dioxide (CeO2, 28.4 ± 10.4 nm) and titanium dioxide (TiO2, 21.6 ± 1.5 nm) ENMs in a single nose-only exposure to 20 mg/m3 or a repeated exposure of 2 × 5 days to 5 mg/m3. Different dose levels were obtained by varying the exposure time for 30 min, 2 or 6 h per day. The content of cerium or titanium in three compartments of the lung (tissue, epithelial lining fluid and freely moving cells), mediastinal lymph nodes, liver, spleen, kidney, blood and excreta was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at various time points post-exposure. As biodistribution is best studied at sub-toxic dose levels, lactate dehydrogenase (LDH), total protein, total cell numbers and differential cell counts were determined in bronchoalveolar lavage fluid (BALF). RESULTS: Although similar lung deposited doses were obtained for both materials, exposure to CeO2 induced persistent inflammation indicated by neutrophil granulocytes influx and exhibited an increased lung elimination half-time, while exposure to TiO2 did not. The lavaged lung tissue contained the highest metal concentration compared to the lavage fluid and cells in the lavage fluid for both materials. Increased cerium concentrations above control levels in secondary organs such as lymph nodes, liver, spleen, kidney, urine and faeces were detected, while for titanium this was found in lymph nodes and liver after repeated exposure and in blood and faeces after a single exposure. CONCLUSION: We have provided insight in the distribution kinetics of these two ENMs based on experimental data and modelling. The study design allows extrapolation at different dose-levels and study durations. Despite equal dose levels of both ENMs, we observed different distribution patterns, that, in part may be explained by subtle differences in biological responses in the lung.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Cerio , Exposición por Inhalación , Pulmón , Titanio , Animales , Titanio/toxicidad , Titanio/farmacocinética , Cerio/toxicidad , Cerio/farmacocinética , Distribución Tisular , Masculino , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Ratas , Nanoestructuras/toxicidad , Administración por Inhalación , Ratas Wistar , Modelos Biológicos , Tamaño de la Partícula , Nanopartículas del Metal/toxicidad
9.
ChemSusChem ; : e202400962, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959341

RESUMEN

Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).

10.
Environ Pollut ; 360: 124586, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39033841

RESUMEN

The practical application of Cu(II)-catalyzed Fenton-like reaction (Cu(II)/H2O2) exhibits a low efficiency in the degradation of refractory compounds of wastewater. The impact of chloride ions (Cl-) on Fenton-like reactions have been investigated, but the influence mechanism is still unclear. Herein, the presence of Cl- (5 mM) significantly accelerated the degradation of benzoic acid (BA) under neutral conditions. The degradation of BA follows pseudo-first-order kinetics, with a degradation rate 7.3 times higher than the Cu(II)/H2O2 system. Multiple evidences strongly demonstrated that this reaction enables the production of reactive chlorine species (RCS) rather than HO• and high-valent copper (Cu(III)). The kinetic model revealed that Cl- could shift reactive species from the key intermediate (Cu(III)-chloro complexes) to RCS. Dichlorine radicals (Cl2•-) was discovered to play a crucial role in BA degradation, which was largely overlooked in previous reports. Although the reaction rate of Cl2•- with BA (k = 2.0 × 106 M-1 s-1) is lower than that of other species, its concentration is 10 orders of magnitude higher than that of Cu(III) and HO•. Furthermore, the exceptional efficacy of the Cu(II)/H2O2 system in BA degradation was observed in saline aquatic environments. This work sheds light on the previously unrecognized role of the metal-chloro complexes in production the RCS and water purification.


Asunto(s)
Cloruros , Cloro , Cobre , Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Cobre/química , Peróxido de Hidrógeno/química , Catálisis , Cloro/química , Cloruros/química , Contaminantes Químicos del Agua/química , Hierro/química , Cinética , Ácido Benzoico/química , Aguas Residuales/química
11.
EJNMMI Res ; 14(1): 56, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884834

RESUMEN

BACKGROUND: In preclinical studies, the positron emission tomography (PET) imaging with [11C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [11C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding. RESULTS: Twelve healthy subjects underwent 90-min baseline [11C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg). Our results indicated abundant [11C]UCB-A brain uptake across all cortical regions, with slow elimination. Kinetic modelling of [11C]UCB-A PET using various compartment models suggested that the irreversible two-tissue compartment model best describes the kinetics of the radioactive tracer. Accordingly, the Patlak graphical analysis was used to simplify the analysis. The estimated SV2A occupancy determined by the Lassen plot was around 66%. Significant specific binding at baseline and comparable binding reduction as grey matter precludes the use of centrum semiovale as reference tissue. CONCLUSIONS: [11C]UCB-A PET imaging enables quantifying SV2A in vivo. However, its slow kinetics require a long scan duration, which is impractical with the short half-life of carbon-11. Consequently, the slow kinetics and complicated quantification methods may restrict its use in humans.

12.
Environ Sci Pollut Res Int ; 31(20): 29294-29303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573582

RESUMEN

Pesticides containing chlorine, which are released during agricultural activities, are chemical substances that mix with surface and underground waters and have toxic, carcinogenic, and mutagenic effects on the entire living ecosystem. Due to their chemically stable structure, conventional water and wastewater treatment techniques such as coagulation, flocculation, and biological oxidation do not entirely remove these chemical substances. Therefore, before releasing them into the environmental receptor, these chemical substances must be transformed into harmless products or mineralized through advanced oxidation processes. When we look at the literature, there are not many studies on methods of removing diclofop methyl from aquatic media. Our study on the removal of diclofop methyl herbicide from aquatic media using the peroxy electrocoagulation method will provide the first information on this subject in the literature. In addition, this treatment method will contribute significantly to filling an important gap in the literature as an innovative approach for diclofop methyl removal. Moreover, peroxy electrocoagulation, which produces less sludge, provides treatment in a short time, and is economical, has been determined to be an advantageous process. The effects of conductivity, pH, H2O2 concentration, current, and time parameters on the removal of diclofop methyl were investigated using a GC-MS instrument. Kinetics, energy consumption, and cost calculations were also made. Under the optimum conditions determined (pH = 5, H2O2 = 500 mg/L, NaCl = 0.75 g/L, current density = 2.66 mA/cm2), the peroxydic electrocoagulation process resulted in a diclofop methyl removal efficiency of 79.2% after a 25-min reaction. When the experimental results were analyzed, it was found that the results fitted the pseudo-second-order kinetic model.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Cinética , Purificación del Agua/métodos , Costos y Análisis de Costo , Electrocoagulación/métodos , Peróxido de Hidrógeno/química
13.
Chemosphere ; 358: 142118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677616

RESUMEN

A comprehensive kinetic model has been developed to address the factors and processes governing the photocatalytic removal of gaseous ethanol by using ZnO loaded in a prototype air purifier. This model simultaneously tracks the concentrations of ethanol and acetaldehyde (as its primary oxidation product) in both gas phase and on the catalyst surface. It accounts for reversible adsorption of both compounds to assign kinetic reaction parameters for different degradation pathways. The effects of oxygen vacancies on the catalyst have been validated through the comparative assessment on the catalytic performance of commercial ZnO before and after the reduction pre-treatment (10% H2/Ar gas at 500 °C). The influence of humidity has also been assessed by partitioning the concentrations of water molecules across the gas phase and catalyst surface interface. Given the significant impact of adsorption on photocatalytic processes, the beginning phases of all experiments (15 min in the dark) are integrated into the model. Results showcase a notable decrease in the adsorption removal of ethanol and acetaldehyde with an increase in relative humidity from 5% to 75%. The estimated number of active sites, as determined by the model, increases from 7.34 10-6 in commercial ZnO to 8.86 10-6 mol gcat-1 in reduced ZnO. Furthermore, the model predicts that the reaction occurs predominantly on the catalyst surface while only 14% in the gas phase. By using quantum yield calculations, the optimal humidity level for photocatalytic degradation is identified as 25% with the highest quantum yield of 6.98 10-3 (commercial ZnO) and 10.41 10-3 molecules photon-1 (reduced ZnO) catalysts.


Asunto(s)
Acetaldehído , Etanol , Humedad , Oxígeno , Óxido de Zinc , Óxido de Zinc/química , Acetaldehído/química , Cinética , Etanol/química , Catálisis , Oxígeno/química , Adsorción , Contaminantes Atmosféricos/química , Oxidación-Reducción , Modelos Químicos
14.
J Pharm Sci ; 113(6): 1624-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38307493

RESUMEN

The potential for drug substances and drug products to contain low levels of N-nitrosamines is of continued interest to the pharmaceutical industry and regulatory authorities. Acid-promoted nitrosation mechanisms in solution have been investigated widely in the literature and are supported by kinetic modelling studies. Carbonyl compounds, particularly formaldehyde, which may be present as impurities in excipients and drug product packaging components or introduced during drug substance manufacturing processes are also known to catalyze nitrosation, but their impact on the risk of N-nitrosamine formation has not been systematically investigated to date. In this study, we experimentally investigated the multivariate impact of formaldehyde, nitrite and pH on N-nitrosation in aqueous solution using dibutylamine as a model amine. We augmented a published kinetic model by adding formaldehyde-catalyzed nitrosation reactions. We validated the new kinetic model vs. the experimental data and then used the model to systematically investigate the impact of formaldehyde levels on N-nitrosamine formation. Simulations of aqueous solution systems show that at low formaldehyde levels the formaldehyde-catalyzed mechanisms are insignificant in comparison to other routes. However, formaldehyde-catalyzed mechanisms can become more significant at neutral and high pH under higher formaldehyde levels. Model-based sensitivity analysis demonstrated that under high nitrite levels and low formaldehyde levels (where the rate of formaldehyde-catalyzed nitrosation is low compared to the acid-promoted pathways) the model can be used with kinetic parameters for model amines in the literature without performing additional experiments to fit amine-specific parameters. For other combinations of reaction parameters containing formaldehyde, the formaldehyde-catalyzed kinetics are non-negligible, and thus it is advised that, under such conditions, additional experiments should be conducted to reliably use the model.


Asunto(s)
Aminas , Formaldehído , Formaldehído/química , Cinética , Catálisis , Concentración de Iones de Hidrógeno , Aminas/química , Nitrosaminas/química , Nitritos/química , Modelos Químicos , Nitrosación
15.
J Imaging ; 10(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392087

RESUMEN

This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.

16.
J Mass Spectrom ; 59(2): e5004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311470

RESUMEN

Imaging photoelectron photoion coincidence (iPEPICO) spectroscopy and tandem mass spectrometry were employed to explore the ionisation and dissociative ionisation of phenyl formate (PF) and phenyl chloroformate (PCF). The threshold photoelectron spectra of both compounds are featureless and lack a definitive origin transition, owing to the internal rotation of the formate functional group relative to the benzene ring, active upon ionisation. CBS-QB3 calculations yield ionisation energies of 8.88 and 9.03 eV for PF and PCF, respectively. Ionised PF dissociates by the loss of CO via a transition state composed of a phenoxy cation and HCO moieties. The dissociation of PCF ions involves the competing losses of CO (m/z 128/130), Cl (m/z 121) and CO2 (m/z 112/114), with Cl loss also shown to occur from the second excited state in a non-statistical process. The primary CO- and Cl-loss fragment ions undergo sequential reactions leading to fragment ions at m/z 98 and 77. The mass-analysed ion kinetic energy (MIKE) spectrum of PCF+ showed that the loss of CO2 occurs with a large reverse energy barrier, which is consistent with the computationally derived minimum energy reaction pathway.

17.
J Hazard Mater ; 468: 133736, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377900

RESUMEN

The peroxone process (O3/H2O2) is reported to be a more effective process than the ozonation process due to an increased rate of generation of hydroxyl radicals (•OH) and inhibition of bromate (BrO3-) formation which is otherwise formed on ozonation of bromide containing waters. However, the trade-off between the H2O2 dosage required for minimization of BrO3- formation and effective pollutant removal has not been clearly delineated. In this study, employing experimental investigations as well as chemical modelling, we show that the concentration of H2O2 required to achieve maximum pollutant removal may not be the same as that required for minimization of BrO3- formation. At the H2O2 dosage required to minimize BrO3- formation (<10 µg/L), only pollutants with high to moderate reactivity towards O3 and •OH are effectively removed. For pollutants with low reactivity towards O3/•OH, high O3 (O3:DOC>>1 g/g) and high H2O2 dosages (O3:H2O2 ∼1 (g/g)) are required for minimizing BrO3- formation along with effective pollutant removal which may result in a very high residual of H2O2 in the effluent, causing secondary pollution. On balance, we conclude that the peroxone process is not effective for the removal of low reactivity micropollutants if minimization of BrO3- formation is also required.

18.
Perit Dial Int ; 44(1): 56-65, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37592841

RESUMEN

BACKGROUND: Patients with end-stage kidney disease (ESKD) require dialysis or transplantation for their survival. There are few experimental animal models mimicking the human situation in which the animals are dependent on dialysis for their survival. We developed a peritoneal dialysis (PD) system for rats to enable long-term treatment under controlled conditions. METHOD: Rats were chemically nephrectomised using orellanine to render them uremic. Two studies were performed, the first with highly uremic rats on PD for 5 days, and the other with moderately uremic rats on PD for 21 days. Blood and dialysate samples were collected repeatedly from the first study and solute concentrations analysed. Based on these values, dialysis parameters were calculated together with generation rates allowing for kinetic modelling of the effects of PD. In the second study, the general conditions of the rats were evaluated during a longer dialysis period. RESULTS: For rats with estimated glomerular filtration rate (GFR) 5-10% of normal (moderately uremic rats), five daily PD cycles kept the rats in good condition for 3 weeks. For highly uremic rats (GFR below 3% of normal), more extensive dialysis is needed to maintain homeostasis and our simulations show that a six daily and four nightly PD cycles should be needed to keep the rats in good condition. CONCLUSION: In conclusion, the PD system described in this study can be used for long-term studies of PD on uremic dialysis-dependent rats mimicking the human setting. To maintain whole body homeostasis of highly uremic rats, intense PD is needed during both day and night.


Asunto(s)
Fallo Renal Crónico , Diálisis Peritoneal , Humanos , Ratas , Animales , Fallo Renal Crónico/terapia , Diálisis Renal , Modelos Animales de Enfermedad
19.
Environ Res ; 241: 117702, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980985

RESUMEN

Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Cobre/química , Níquel , Adsorción , Ecosistema , Metales Pesados/química , Compuestos Orgánicos , Agua , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
20.
Chemphyschem ; 25(3): e202300515, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991746

RESUMEN

A detailed and accurate combustion reaction mechanism is crucial for understanding the nature of fuel combustion. In this work, a theoretical study of reaction HCCO+HO2 using M06-2X/6-311++G(d,p) for geometry optimization and combined methods based on spin-unrestricted CCSD(T)/CBS level of theory with basis set extrapolation from MP2/aug-cc-pVnZ (n=T and Q) for energy calculations were performed. The temperature- and pressure-dependent rate coefficients at 300-2000 K and 0.01-100 atm, suitable for combustion conditions, were derived using the Rice-Ramsberger-Kassel-Marcus/Master-Equation approach. Furthermore, temperature-dependent thermochemistry data of key species for the HCCO+HO2 system has also been studied. Finally, an updated ketene model is developed by supplementing the most recent theoretical work and the theoretical work in this paper. This updated model was tested to simulate the speciation of ketene oxidation in available experimental research. It is shown that the updated model for predicting ketene oxidation exhibits a high level of agreement with experimental data across a wide range of species profiles. An analysis was conducted to identify the crucial reactions that influence ketene ignition. This paper's research findings are essential for enhancing the combustion mechanism of ketene and other hydrocarbons and oxygenated hydrocarbon fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...