Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
Food Chem ; 461: 140827, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146684

RESUMEN

This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a ß-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.

2.
Talanta ; 280: 126641, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142126

RESUMEN

Foodomics employs advanced analytical techniques to provide answers regarding food composition, authenticity control, marker identification and issues related to food quality and safety. Nuclear magnetic resonance (NMR) spectroscopy and chromatography hyphenated to mass spectrometry (MS) are the main analytical platforms used in this field. Nevertheless, they are rarely employed in an integrated manner, and even then, the contribution of each technique remains vague. Table olives (Olea europaea L.) are a food commodity of high economic and nutritional value with an increasing production tendency over the last two decades, which, however, suffers from extensive fraud incidents and quality determination uncertainties. Thus, the current attempt aims towards two axes with the first being the multilevel integration of LC-HRMS and NMR data of the same samples and table olives being the selected matrix. In more detail, UPLC-HRMS/MS-based analysis was compared at different stages within an untargeted metabolomics workflow with an NMR-based study and the complementarity of the two platforms was evaluated. Furthermore, statistical heterospectroscopy (SHY), rarely employed in foodomics, combining the spectroscopic with spectrometric datasets and aiming to increase the confidence level of annotated biomarkers was applied. Amongst these lines, the second parallel axis of this study was the detailed characterization of table olives' metabolome in search for quality markers considering the impact of geographical (from Northern to Southern Greece) and botanical origin (Kalamon, Konservolia, Chalkidikis cultivars), as well as processing parameters (Spanish, Greek). To that end, using deep dereplication tools including statistical methods, with SHY employed for the first time in table olives, different biomarkers, belonging to the classes of phenyl alcohols, phenylpropanoids, flavonoids, secoiridoids and triterpenoids were identified as responsible for the observed classifications. The current binary pipeline, focusing on biomarkers' identification confidence, could be suggested as a meaningful workflow not only in olive-based products, but also in food quality control and foodomics in general.

3.
J Chromatogr A ; 1732: 465230, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39142167

RESUMEN

Untargeted metabolomics by LCHRMS is a powerful tool to enhance our knowledge of pathophysiological processes. Whereas validation of a bioanalytical method is customary in most analytical chemistry fields, it is rarely performed for untargeted metabolomics. This study aimed to establish and validate an analytical platform for a long-term, clinical metabolomics study. Sample preparation was performed with an automated liquid handler and four analytical methods were developed and evaluated. The validation study spanned three batches with twelve runs using individual serum samples and various quality control samples. Data was acquired with untargeted acquisition and only metabolites identified at level 1 were evaluated. Validation parameters were set to evaluate key performance metrics relevant for the intended application: reproducibility, repeatability, stability, and identification selectivity, emphasizing dataset intrinsic variance. Concordance of semi-quantitative results between methods was evaluated to identify potential bias. Spearman rank correlation coefficients (rs) were calculated from individual serum samples. Of the four methods tested, two were selected for validation. A total of 47 and 55 metabolites (RPLC-ESI+- and HILIC-ESI--HRMS, respectively) met specified validation criteria. Quality assurance involved system suitability testing, sample release, run release, and batch release. The median repeatability and within-run reproducibility as coefficient of variation% for metabolites that passed validation on RPLC-ESI+- and HILIC-ESI--HRMS were 4.5 and 4.6, and 1.5 and 3.8, respectively. Metabolites that passed validation on RPLC-ESI+-HRMS had a median D-ratio of 1.91, and 89 % showed good signal intensity after ten-fold dilution. The corresponding numbers for metabolites with the HILIC-ESI--HRMS method was 1.45 and 45 %, respectively. The rs median ({range}) for metabolites that passed validation on RPLC-ESI+- was 0.93 (N = 9 {0.69-0.98}) and on HILIC-ESI--HRMS was 0.93 (N = 22 {0.55-1.00}). The validated methods proved fit-for-purpose and the laboratory thus demonstrated its capability to produce reliable results for a large-scale, untargeted metabolomics study. This validation not only bolsters the reliability of the assays but also significantly enhances the impact and credibility of the hypotheses generated from the studies. Therefore, this validation study serves as a benchmark in the documentation of untargeted metabolomics, potentially guiding future endeavors in the field.

4.
Drug Test Anal ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118356

RESUMEN

The non-psychoactive cannabinoids cannabidiol (CBD) and cannabidiolic acid (CBDA) are available on the market in different forms, mostly for their anti-inflammatory and potential analgesic properties. These substances are prohibited during equine competitions. CBD and CBDA are naturally present in hemp straw, commonly used as a bedding substitute for wheat straw. Unfortunately, horses can eat it, which therefore could lead to a possible risk of positive findings for CBD/CBDA in biological samples after doping control tests. The goals of this study were, first, to provide recommendations on the use of hemp straw before competition and, second, to assess if discrimination between hemp bedding exposure and CBD oil administration is possible. Several CBD equine in vivo studies have been conducted, including one on hemp straw used as bedding and one after administration of CBD oil by topical and sublingual routes. In hemp straw, CBDA was detected in higher quantities than CBD, and other cannabinoids have been observed. After hemp straw exposure, CBDA was also detected in higher quantities than CBD in all urine samples. It appeared that hemp straw should not be used as bedding for equine competition except if a delay of at least 48 h is respected. Regarding the CBD oil product analysis, CBD was the main compound detected. After administration, 7-hydroxy CBD was identified in the urine. In conclusion, based on these data, we highlighted that it could be possible to discriminate the exposure of a horse to hemp straw from an administration of a CBD oil product thanks to the main presence of CBDA.

5.
Nat Prod Res ; : 1-5, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097913

RESUMEN

The polyphenolic profile of the hydroethanol extract of Asphodelus fistulosis L. roots (HEAFR) was determined using LC-HRMS/MS technique while its antioxidant activity was evaluated using five different methods (DPPH, reducing power, reduction via Fe+2 phenanthroline complex formation, ABTS•+, silver ion reduction capacity). In addition, preliminary toxicity and cytotoxicity of the HEAFR were assessed on larvae. The results revealed the presence of 40 polyphenols, with luteolin (23.89%), luteolin-7-O-ß-D-glucoside (15.32%), emodin (13.49%) and feruloyltyramine (10.57%) as major compounds. The highest antioxidant activity was shown in the ABTS•+ assay (IC50: 89.34 ± 5.65 µg/mL) whereas preliminary toxicity and cytotoxicity tests showed that this extract is non-toxic. Moreover, the HEAFR exhibited a good protective effect of erythrocyte membranes at a high concentration of 800 µg/mL and showed comparable stabilisation efficiency to gallic acid at a concentration of 200 µg/mL. These findings highlight the HEAFR potential as a non-toxic antioxidant agent with protective effects on cell membranes.

6.
Iran J Pharm Res ; 23(1): e143494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108647

RESUMEN

Background: Cancer remains the leading cause of death globally, with breast cancer being the foremost cause among women and lung cancer ranking second for both women and men. Objectives: This study aimed to identify the metabolomic content of Coleus amboinicus leaves and evaluate their anticancer activities against breast and lung cancer cells, thereby providing insights into potential alternative treatments for these cancers and initiating research on active isolates from C. amboinicus leaves. Methods: The research methodology involved maceration using ethanol, followed by multistage partitioning with solvents n-hexane, chloroform, and ethyl acetate. Phytochemical screening was performed using standard reagents to detect the presence of alkaloids, phenolics, polyphenols, flavonoids, steroids/triterpenoids, and saponins. Metabolomic profiling was conducted using LC/HRMS, and the anticancer activities against lung cancer cells (A549) and breast cancer cells (MCF-7) were assessed using the MTT assay. Results: The results showed that the C. amboinicus extract contains various secondary metabolite groups such as alkaloids, phenolics and polyphenols, flavonoids, steroids, triterpenoids, and saponins. Conclusions: The diverse metabolomic profile of the C. amboinicus leaf extract demonstrated potential activity against cancer, as evidenced by in vitro tests on lung (A549) and breast (MCF-7) cancer cells. C. amboinicus leaf extract shows promise as an active ingredient in the prevention and alternative natural treatment of lung and breast cancer. Further research and testing, both in vivo and clinically, are warranted.

7.
Chemosphere ; 364: 142976, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094701

RESUMEN

Cyanobacteria in water supplies are considered an emerging threat, as some species produce toxic metabolites, cyanotoxins, of which the most widespread and well-studied are microcystins. Consumption of contaminated water is a common exposure route to cyanotoxins, making the study of cyanobacteria in drinking waters a priority to protect public health. In drinking water treatment plants, pre-oxidation with chlorinated compounds is widely employed to inhibit cyanobacterial growth, although concerns on its efficacy in reducing cyanotoxin content exists. Additionally, the effects of chlorination on abundant but less-studied cyanometabolites (e.g. cyanopeptolins whose toxicity is still unclear) remain poorly investigated. Here, two chlorinated oxidants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO2), were tested on the toxic cyanobacterium Microcystis aeruginosa, evaluating their effect on cell viability, toxin profile and content. Intra- and extracellular microcystins and other cyanometabolites, including their degradation products, were identified using an untargeted LC-HRMS approach. Both oxidants were able to inactivate M. aeruginosa cells at a low dose (0.5 mg L-1), and greatly reduced intracellular toxins content (>90%), regardless of the treatment time (1-3 h). Conversely, a two-fold increase of extracellular toxins after NaClO treatment emerged, suggesting a cellular damage. A novel metabolite named cyanopeptolin-type peptide-1029, was identified based on LC-HRMSn (n = 2, 3) evidence, and it was differently affected by the two oxidants. NaClO led to increase its extracellular concentration from 2 to 80-100 µg L-1, and ClO2 induced the formation of its oxidized derivative, cyanopeptolin-type peptide-1045. In conclusion, pre-oxidation treatments of raw water contaminated by toxic cyanobacteria may lead to increased cyanotoxin concentrations in drinking water and, depending on the chemical agent, its dose and treatment duration, also of oxidized metabolites. Since the effects of such metabolites on human health remain unknown, this issue should be handled with extreme caution by water security agencies involved in drinking water management.

8.
J Pept Sci ; : e3652, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162000

RESUMEN

Liraglutide (LGT) is a synthetic glucagon-like peptide-1 analogue mainly used for the treatment of type-2 diabetes or obesity. Comprehensive stability testing is essential in the development and routine quality control of synthetic therapeutic peptide pharmaceuticals. The GLP-1 peptide drugs are usually formulated in aqueous-base solution, which can generate stability issues during manufacturing, storage or shipment. The current study endeavors to observe the chemical stability behavior of LGT by exposing the drug substance to oxidative and hydrolytic stress conditions. A simple liquid chromatography (LC) method was developed where sufficient resolution between LGT and the generated degradation products was achieved. In total, 19 degradation products (DPs) were separated under acidic, basic and oxidative stress conditions. Using LC-HRMS, MS/MS studies, the generated degradation products were identified and characterized. The mechanistic fragmentation pathway for all generated DPs were established and the plausible chemical structure for the identified DPs was predicted based on MS/MS data. The results strongly suggest that LGT is highly susceptible to degrade under oxidative and hydrolytic conditions. Furthermore, this study provides insights into the hydrolytic and oxidative stability of LGT, which can be implied during generic and novel formulation drug development and discovery in synthesizing relatively stable GLP-1 analogues.

9.
Drug Test Anal ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039910

RESUMEN

A number of synthetic cannabinoids have been appearing in the recreational drug market for more than a decade. Recent additions are so-called semi-synthetic cannabinoids, and they structurally closely resemble the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol. Knowledge of new (semi-)synthetic cannabinoids is essential to help identify them in authentic forensic case samples. Therefore, the aim of the study was to examine two commercially available electronic cigarette liquid products claiming to contain cannabinoids and characterize the structures of the main compounds. The liquid products were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). In product A, typical cannabinoids (cannabidiol, cannabigerol, and cannabinol) and terpenes (α-caryophyllene and ß-caryophyllene) were identified by comparison with reference materials. An unknown peak was isolated by semi-preparative high-performance LC, analyzed by nuclear magnetic resonance (NMR) spectroscopy, and identified to be Δ9-tetrahydrocannabihexol acetate (Δ9-THCH-O). To the authors' knowledge, this is the first report of the identification of Δ9-THCH-O in commercially available products. Another compound estimated as cannabihexol acetate was also detected. In product B, cannabidiol, cannabinol, α-caryophyllene, and ß-caryophyllene were identified, while two unknown peaks were estimated as tetrahydrocannabidiol isomers. Despite products A and B being labeled to contain "60% HHCPM" and "80% 10-OH-HHC," respectively, no such compounds were detected. The findings of this study could help detect Δ9-THCH-O in case samples and highlight the need to keep monitoring commercial products to identify new drugs, while warning that the package labels cannot be trusted.

10.
BMC Complement Med Ther ; 24(1): 274, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030504

RESUMEN

BACKGROUND: The high virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has triggered global health and economic concerns. The absence of specific antiviral treatments and the side effects of repurposed drugs present persistent challenges. This study explored a promising antiviral herbal extract against SARS-CoV-2 from selected Thai medicinal plants based on in vitro efficacy and evaluated its antiviral lead compounds by molecular docking. METHODS: Twenty-two different ethanolic-aqueous crude extracts (CEs) were rapidly screened for their potential activity against porcine epidemic diarrhea virus (PEDV) as a surrogate using a plaque reduction assay. Extracts achieving ≥ 70% anti-PEDV efficacy proceeded to the anti-SARS-CoV-2 activity test using a 50% tissue culture infectious dose method in Vero E6 cells. Molnupiravir and extract-free media served as positive and negative controls, respectively. Potent CEs underwent water/ethyl acetate fractionation to enhance antiviral efficacy, and the fractions were tested for anti-SARS-CoV-2 performance. The fraction with the highest antiviral potency was identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Molecular docking analyses of these compounds against the main protease (Mpro) of SARS-CoV-2 (6LU7) were performed to identify antiviral lead molecules. The top three hits were further evaluated for their conformational stability in the docked complex using molecular dynamics (MD) simulation. RESULTS: The water fraction of mulberry (Morus alba Linn.) leaf CE (WF-MLCE) exhibited the most potent anti-SARS-CoV-2 efficacy with low cytotoxicity profile (CC50 of ~ 0.7 mg/mL), achieving 99.92% in pre-entry mode and 99.88% in postinfection treatment mode at 0.25 mg/mL. Flavonoids and conjugates were the predominant compounds identified in WF-MLCE. Molecular docking scores of several flavonoids against SARS-CoV-2 Mpro demonstrated their superior antiviral potency compared to molnupiravir. Remarkably, myricetin-3-O-ß-D-galactopyranoside, maragrol B, and quercetin 3-O-robinobioside exhibited binding energies of ~ - 9 kcal/mol. The stability of each ligand-protein complex of these compounds with the Mpro system showed stability during MD simulation. These three molecules were pronounced as antiviral leads of WF-MLCE. Given the low cytotoxicity and high antiviral potency of WF-MLCE, it holds promise as a candidate for future therapeutic development for COVID-19 treatment, especially considering its economic and pharmacological advantages.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Extractos Vegetales , Plantas Medicinales , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/química , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plantas Medicinales/química , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Tailandia , Células Vero
11.
J Agric Food Chem ; 72(28): 15680-15692, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973576

RESUMEN

Peel and seeds are the main byproducts from tomato (Lycopersicon esculentum P. Mill) processing with high concentrations of polyphenols that have been underexploited. Herein, polyphenolic profiles in tomato peel and seeds were elucidated by untargeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) with an LTQ Orbitrap analyzer. Samples from two Spanish regions─"Murcia" and "Almería"─were analyzed to obtain complementary results. 57 compounds were found, mainly phenolic acids and flavonoids, of which eight were identified for the first time in tomato. Polyphenols were more abundant in byproducts from "Murcia" samples than in those from"Almería" samples, where the abundance of compounds like coutaric, caffeic, neochlorogenic, dicaffeoylquinic and ferulic acids, vanillic acid hexoside, catechin, naringenin, prunin, apigenin-O-hexoside, rutin, and rutin-O-pentoside was even much higher in byproducts than that in whole fruits. These results reveal the wide range of polyphenols found in tomato byproducts, with potential applications in pharmaceutical research, food preservation, and cosmetic development, among others.


Asunto(s)
Frutas , Polifenoles , Semillas , Solanum lycopersicum , Espectrometría de Masas en Tándem , Solanum lycopersicum/química , Polifenoles/análisis , Polifenoles/química , Semillas/química , Espectrometría de Masas en Tándem/métodos , Frutas/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Flavonoides/análisis , Flavonoides/química
12.
Food Chem X ; 23: 101607, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39071933

RESUMEN

Two untargeted metabolomics approaches (LC-HRMS and 1H NMR) were combined to classify Amarone wines based on grape withering time and yeast strain. The study employed a multi-omics data integration approach, combining unsupervised data exploration (MCIA) and supervised statistical analysis (sPLS-DA). The results revealed that the multi-omics pseudo-eigenvalue space highlighted a limited correlation between the datasets (RV-score = 16.4%), suggesting the complementarity of the assays. Furthermore, the sPLS-DA models correctly classified wine samples according to both withering time and yeast strains, providing a much broader characterization of wine metabolome with respect to what was obtained from the individual techniques. Significant variations were notably observed in the accumulation of amino acids, monosaccharides, and polyphenolic compounds throughout the withering process, with a lower error rate in sample classification (7.52%). In conclusion, this strategy demonstrated a high capability to integrate large omics datasets and identify key metabolites able to discriminate wine samples based on their characteristics.

13.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063049

RESUMEN

Ostarine (enobasarm) is a selective androgen receptor modulator with great therapeutic potential. However, it is also used by athletes to promote muscle growth and enhance performances without the typical adverse effects of anabolic steroids. Ostarine popularity increased in recent years, and it is currently the most abused "other anabolic agent" (subclass S1.2. of the "anabolic agents" class S1) from the World Anti-Doping Agency's (WADA) prohibited list. Several cases of liver toxicity were recently reported in regular users. Detecting ostarine or markers of intake in biological matrices is essential to document ostarine use in doping. Therefore, we sought to investigate ostarine metabolism to identify optimal markers of consumption. The substance was incubated with human hepatocytes, and urine samples from six ostarine-positive cases were screened. Analyses were performed via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) and software-assisted data mining, with in silico metabolite predictions. Ten metabolites were identified with hydroxylation, ether cleavage, dealkylation, O-glucuronidation, and/or sulfation. The production of cyanophenol-sulfate might participate in the mechanism of ostarine liver toxicity. We suggest ostarine-glucuronide (C25H22O9N3F3, diagnostic fragments at m/z 118, 185, and 269) and hydroxybenzonitrile-ostarine-glucuronide (C25H22O10N3F3, diagnostic fragments at m/z 134, 185, and 269) in non-hydrolyzed urine and ostarine and hydroxybenzonitrile-ostarine (C19H14O4N3F3, diagnostic fragments at m/z 134, 185, and 269) in hydrolyzed urine as markers to document ostarine intake in doping.


Asunto(s)
Anabolizantes , Doping en los Deportes , Humanos , Masculino , Anabolizantes/metabolismo , Anabolizantes/orina , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Espectrometría de Masas en Tándem , Receptores Androgénicos/metabolismo , Detección de Abuso de Sustancias/métodos , Cromatografía Liquida , Adulto , Anilidas
14.
Drug Test Anal ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992930

RESUMEN

Due to the presumed lipolytic and anabolic properties, the misuse of human growth hormone (hGH) and its synthetic analogs in sports is prohibited both in- and out-of-competition. Within this research project, the detectability of somatrogon, a recombinant fusion glycoprotein of 22 kDa hGH and the C-terminal peptide (CTP) of the human chorionic gonadotropin (hCG) ß-subunit, with current WADA-approved doping control assays for hGH and hCG was investigated. For that purpose, cross-reactivity tests and a somatrogon administration study were conducted, and only "Kit 2" of the GH isoform differential immunoassays proved applicable to the detection of somatrogon administration in serum. In urine, the immunoassay specific for total hCG yielded presumptively positive findings for several post-administration samples, which can probably be attributed to the presence of an immunoreactive fragment of the hCG ß-subunit. As the detectability of somatrogon with these approaches was found to be limited, a highly specific detection assay (LOD: 10 ng/mL) for the drug in serum samples was developed by using affinity purification with GH receptor (GHR)-conjugated magnetic beads, proteolytic digestion, and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Following optimization, the approach was comprehensively characterized, and authentic post-administration serum samples were successfully analyzed as proof-of-concept, indicating a detection window of at least 96 h. Consequently, the presented method can be employed to confirm the presence of somatrogon in serum samples, where only "Kit 2" of the currently used immunoassay kits yielded an abnormally high Rec/Pit ratio.

15.
Plant Biol (Stuttg) ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985650

RESUMEN

The recent biological invasion of box tree moth Cydalima perspectalis on Buxus trees has a major impact on European boxwood stands through severe defoliation. This can hinder further regrowth and threaten survival of populations. In a mesocosm approach and controlled larval density over a 2-month period, responses of B. sempervirens essential and specialized metabolites were characterized using metabolomics, combining 1H-NMR and LC-MS/MS approaches. This is the first metabolome depiction of major Buxus responses to boxwood moth invasion. Under severe predation, remaining green leaves accumulate free amino acids (with the noticeable exception of proline). The leaf trans-4-hydroxystachydrine and stachydrine reached 10-13% and 2-3% (DW), while root content was lower but also modulated by predation level. Larval predation promoted triterpenoid and (steroidal) alkaloid synthesis and diversification, while flavonoids did not seem to have a relevant role in Buxus resistance. Our results reveal the concomitant responses of central and specialized metabolism, in relation to severity of predation. They also confirm the potential of metabolic profiling using 1H-NMR and LC-MS to detect re-orchestration of metabolism of native boxwood after severe herbivorous predation by the invasive box-tree moth, and thus their relevance for plant-insect relationships and ecometabolomics.

16.
Eur J Mass Spectrom (Chichester) ; : 14690667241262935, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056322

RESUMEN

Exenatide is a synthetic glucagon-like peptide 1 analog, widely used in the management of type 2 diabetes mellitus. The stability of pharmaceutical products is significantly impacted by various environmental stress conditions. The present study reports the development of a validated reverse-phase high-performance liquid chromatography (RP-HPLC) stability-indicating method for the identification of force degradation products (DPs) of synthetic glucagon-like peptide-1 analog Exenatide using UHPLC-Orbitrap fusionTM mass spectrometer. Force degradation studies were performed by subjecting Exenatide to various stress conditions, such as hydrolytic, oxidative, photolytic and thermal to investigate the stability indicating ability of the method. Significant degradation was observed during acidic, oxidative, photolytic and thermal stress conditions. Exenatide and its major DPs identification and characterization were demonstrated by employing LC-HRMS and MS/MS method. In total, five major stress DPs were characterized, and their fragmentation pathway was proposed using MS/MS studies. Finally, the proposed RP-HPLC method was validated as per ICH guidance.

17.
Fitoterapia ; 177: 106115, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977255

RESUMEN

This study was designed to investigate chemical composition and biological activities of the Anthriscus cerefolium methanolic extract. Chemical characterization of the extracts was performed by LC-HRMS/MS analysis. Antimicrobial activities of the extract were investigated on six bacteria and eight fungi while antioxidant activity was assessed by six different assays. Anti-enzymatic activity of the methanolic extract was tested on five enzymes associated with therapy of neurodegenerative diseases and diabetes mellitus type 2. Cytotoxic properties of the extract were tested on human immortalized keratinocytes (HaCaT) and tumor cell lines (SiHa, MCF7, HepG2). Anti-inflammatory activity of the extract was assessed on bacteria mediated inflammation model using HaCaT cell line. Molecular docking studies of enzymes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were performed. The results showed that the obtained extract was rich in phenolic compounds (a total of seventy-two were identified), with malonyl-1,4-O-dicaffeoylquinic acid and 3,5-O-dicaffeoylquinic acid dominating in the sample. The extract expressed antimicrobial, antioxidant, anti-enzymatic, cytotoxic and anti-inflammatory properties. The identified compounds demonstrated strong binding to the acetylcholinesterase (AChE) and to a lesser extent, to the butyrylcholinesterase (BChE), glucosidase, amylase, and modestly, to tyrosinase. KEGG pathway analysis has shown that the certain phenolic compounds may be related to anti-tumor, anti-inflammatory and anti-microbial activities of the extract. The data obtained suggest that phenolic compounds of the extract and their mixtures should be considered for future research as ingredients in pharmaceutical and nutraceutical formulations.


Asunto(s)
Antiinflamatorios , Antioxidantes , Simulación del Acoplamiento Molecular , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Línea Celular Tumoral , Antiinfecciosos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fenoles/farmacología
18.
Chem Biodivers ; 21(8): e202401061, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963913

RESUMEN

In the current investigation, total phenolics and flavonoids of the methanolic extract obtained from the trunk bark of Acacia cyanophylla Lindl. were quantified by LC-HRMS technique. DPPH and ABTS reagents were employed to assay the antioxidant potential. The anti-tyrosinase and anti-α-amylase potentials were also assayed. The findings revealed that thirteen polyphenolic compounds were detected in the methanolic extract with trans-taxifolin (23.2 g/kg), as the major constituent. A. cyanophylla extract displayed a higher activity with DPPH test (IC50=10.14±1.00 µg/mL) than with ABTS (IC50=15.27±2.09 µg/mL). The same extract also exhibited interesting α-amylase inhibitory action (IC50 value of 4.00±0.17 µg/mL). Moreover, methanolic trunk bark extract exerted strong anti-tyrosinase capacity with an IC50 of 5.12±0.41 µg/mL in comparison to kojic acid (IC50=10.22±0.85 µg/mL) used as positive control. The antioxidant, anti-tyrosinase and anti-α-amylase potentials of the methanolic extract of A. cyanophylla trunk bark were reinforced by in silico molecular docking analyses, which confirmed the results of the in vitro tests.


Asunto(s)
Acacia , Antioxidantes , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Fenoles , Corteza de la Planta , Extractos Vegetales , alfa-Amilasas , Corteza de la Planta/química , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Acacia/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Simulación por Computador , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación
19.
Chem Biodivers ; : e202400915, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989544

RESUMEN

In this comprehensive screening study, the chemical composition, and cytotoxic, antimicrobial, and anticholinergic activities of the green algae Penicillus capitatus, collected from Antalya-Türkiye, were determined as in vitro and in silico. GC-MS analysis of the hexane extract revealed a high content of fatty acids, with hexadecanoic acid constituting half of the total fatty acid content. LC-HRMS analysis of the DCM:MeOH extract identified ascorbic acid as the most abundant compound, followed by (-)-epigallocatechin and salicylic acid. The DCM:MeOH extract exhibited potent cytotoxicity against MDA-MB-231 and MCF7 breast cancer cell lines, outperforming doxorubicin with lower IC50 values and a higher selectivity index. Additionally, the extract demonstrated significant antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, along with selective inhibition of acetylcholinesterase (hAChE) over butyrylcholinesterase (hBChE). Molecular docking and dynamics studies revealed that apigenin-7-O-glucoside and epigallocatechin form stable interactions with estrogen receptor alpha (ERα) and hAChE, suggesting their potential as inhibitors. In silico ADME studies indicated favorable pharmacokinetic profiles for the detected compounds, supporting their potential as drug candidates. The promising cytotoxic activity of the P. capitatus extracts, coupled with significant antimicrobial properties and selective hAChE inhibition, highlights their therapeutic potential for breast cancer treatment, infection management, and neurodegenerative disease intervention.

20.
Fitoterapia ; 177: 106072, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897249

RESUMEN

E. tournefortii has wound healing properties in folk medicine and 5% infusions are used for stomach ulcers. It is also used in colds, abdominal pain, digestive problems, as an appetite enhancer and antispasmodic. For this purpose, in the study biochemical and histopathological evaluation of the ulcer protective effect of the extract obtained from the E. tournefortii in the indomethacin-induced gastric ulcer model in rats was aimed to develop new strategies in the treatment of ulcers. The phytochemical profile of the plant was elucidated for the first time by LC-HRMS in this study. The results indicate that, in terms of TNF-α, IL-1ß, IL-8, IL-6, PGE2, NF-κB, VEGF, NO, COX-1 and COX-2 biochemical parameters, E. tournefortii protects the gastric mucosa to the inflammation, and also modulates the PGE2 pathway, and has a similar effect or even a more positive effect than the reference substance lansoprazole. According to LC-HRMS analysis results, chlorogenic acid, genistein and quinic acid were the main constituents of E. tournefortii extract with 1397.081, 1014.177 and 992.527µg/g extract, respectively. Considering the anti-inflammatory and antioxidant effects of these phenolic components, it is thought that the major components are responsible for the anti-ulcer activity of the E. tournefortii extract.


Asunto(s)
Antiulcerosos , Indometacina , Fitoquímicos , Extractos Vegetales , Úlcera Gástrica , Animales , Ratas , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiulcerosos/farmacología , Antiulcerosos/aislamiento & purificación , Ratas Wistar , Mucosa Gástrica/efectos de los fármacos , Dinoprostona/metabolismo , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...