Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosurg Spine ; : 1-6, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32114528

RESUMEN

OBJECTIVE: Posterior thoracic fusion (PTF) is used as a surgical treatment for a wide range of pathologies. The monitoring of somatosensory evoked potentials (SSEPs) is used to detect and prevent injury during many neurological surgeries. The authors conducted a study to evaluate the efficacy of SSEPs in predicting perioperative lower-extremity (LE) neurological deficits during spinal thoracic fusion surgery. METHODS: The authors included patients who underwent PTF with SSEP monitoring performed throughout the entire surgery from 2010 to 2015 at the University of Pittsburgh Medical Center (UPMC). The sensitivity, specificity, odds ratio, and receiver operating characteristic curve were calculated to evaluate the diagnostic accuracy of SSEP changes in predicting postoperative deficits. Univariate analysis was completed to determine the impact of age exceeding 65 years, sex, obesity, abnormal baseline testing, surgery type, and neurological deficits on the development of intraoperative changes. RESULTS: From 2010 to 2015, 771 eligible patients underwent SSEP monitoring during PTF at UPMC. Univariate and linear regression analyses showed that LE SSEP changes significantly predicted LE neurological deficits. Significant changes in LE SSEPs had a sensitivity and specificity of 19% and 96%, respectively, in predicting LE neurological deficits. The diagnostic odds ratio for patients with new LE neurological deficits who had significant changes in LE SSEPs was 5.86 (95% CI 2.74-12.5). However, the results showed that a loss of LE waveforms had a poor predictive value for perioperative LE deficits (diagnostic OR 1.58 [95% CI 0.19-12.83]). CONCLUSIONS: Patients with new postoperative LE neurological deficits are 5.9 times more likely to have significant changes in LE SSEPs during PTF. Surgeon awareness of an LE SSEP loss may alter surgical strategy and positively impact rates of postoperative LE neurological deficit status. The relatively poor sensitivity of LE SSEP monitoring may indicate a need for multimodal neurophysiological monitoring, including motor evoked potentials, in thoracic fusion surgery.

2.
J Neurosurg Pediatr ; : 1-11, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419801

RESUMEN

OBJECTIVE: Pediatric cervical deformity is a complex disorder often associated with neurological deterioration requiring cervical spine fusion. However, limited literature exists on new perioperative neurological deficits in children. This study describes new perioperative neurological deficits in pediatric cervical spine instrumentation and fusion. METHODS: A single-center review of pediatric cervical spine instrumentation and fusion during 2002-2018 was performed. Demographics, surgical characteristics, and neurological complications were recorded. Perioperative neurological deficits were defined as the deterioration of preexisting neurological function or the appearance of new neurological symptoms. RESULTS: A total of 184 cases (160 patients, 57% male) with an average age of 12.6 ± 5.30 years (range 0.2-24.9 years) were included. Deformity (n = 39) and instability (n = 36) were the most frequent indications. Syndromes were present in 39% (n = 71), with Down syndrome (n = 20) and neurofibromatosis (n = 12) the most prevalent. Eighty-seven (48%) children presented with preoperative neurological deficits (16 sensory, 16 motor, and 55 combined deficits).A total of 178 (96.7%) cases improved or remained neurologically stable. New neurological deficits occurred in 6 (3.3%) cases: 3 hemiparesis, 1 hemiplegia, 1 quadriplegia, and 1 quadriparesis. Preoperative neurological compromise was seen in 4 (67%) of these new deficits (3 myelopathy, 1 sensory deficit) and 5 had complex syndromes. Three new deficits were anticipated with intraoperative neuromonitoring changes (p = 0.025).Three (50.0%) patients with new neurological deficits recovered within 6 months and the child with quadriparesis was regaining neurological function at the latest follow-up. Hemiplegia persisted in 1 patient, and 1 child died due a complication related to the tracheostomy. No association was found between neurological deficits and indication (p = 0.96), etiology (p = 0.46), preoperative neurological symptoms (p = 0.65), age (p = 0.56), use of halo vest (p = 0.41), estimated blood loss (p = 0.09), levels fused (p = 0.09), approach (p = 0.07), or fusion location (p = 0.07). CONCLUSIONS: An improvement of the preexisting neurological deficit or stabilization of neurological function was seen in 96.7% of children after cervical spine fusion. New or progressive neurological deficits occurred in 3.3% of the patients and occurred more frequently in children with preoperative neurological symptoms. Patients with syndromic diagnoses are at higher risk to develop a deficit, probably due to the severity of deformity and the degree of cervical instability. Long-term outcomes of new neurological deficits are favorable, and 50% of patients experienced complete neurological recovery within 6 months.

3.
J Neurosurg ; 127(4): 877-891, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28059664

RESUMEN

OBJECTIVE The aim of the present study was to evaluate the usefulness of navigated transcranial magnetic stimulation (nTMS) as a prognostic predictor for upper-extremity motor functional recovery from postsurgical neurological deficits. METHODS Preoperative and postoperative nTMS studies were prospectively applied in 14 patients (mean age 39 ± 12 years) who had intraparenchymal brain neoplasms located within or adjacent to the motor eloquent area in the cerebral hemisphere. Mapping by nTMS was done 3 times, i.e., before surgery, and 1 week and 3 weeks after surgery. To assess the response induced by nTMS, motor evoked potential (nTMS-MEP) was recorded using a surface electromyography electrode attached to the abductor pollicis brevis (APB). The cortical locations that elicited the largest electromyography response by nTMS were defined as hotspots. Hotspots for APB were confirmed as positive responsive sites by direct electrical stimulation (DES) during awake craniotomy. The distances between hotspots and lesions (DHS-L) were measured. Postoperative neurological deficits were assessed by manual muscle test and dynamometer. To validate the prognostic value of nTMS in recovery from upper-extremity paresis, the following were investigated: 1) the correlation between DHS-L and the serial grip strength change, and 2) the correlation between positive nTMS-MEP at 1 week after surgery and the serial grip strength change. RESULTS From the presurgical nTMS study, MEPs from targeted muscles were identified in 13 cases from affected hemispheres. In one case, MEP was not evoked due to a huge tumor. Among 9 cases from which intraoperative DES mapping for hand motor area was available, hotspots for APB identified by nTMS were concordant with DES-positive sites. Compared with the adjacent group (DHS-L < 10 mm, n = 6), the nonadjacent group (DHS-L ≥ 10 mm, n = 7) showed significantly better recovery of grip strength at 3 months after surgery (p < 0.01). There were correlations between DHS-L and recovery of grip strength at 1 week, 3 weeks, and 3 months after surgery (r = 0.74, 0.68, and 0.65, respectively). Postsurgical nTMS was accomplished in 13 patients. In 9 of 13 cases, nTMS-MEP from APB muscle was positive at 1 week after surgery. Excluding the case in which nTMS-MEP was negative from the presurgical nTMS study, recoveries in grip strength were compared between 2 groups, in which nTMS-MEP at 1 week after surgery was positive (n = 9) or negative (n = 3). Significant differences were observed between the 2 groups at 1 week, 3 weeks, and 3 months after surgery (p < 0.01). Positive nTMS-MEP at 1 week after surgery correlated well with the motor recovery at 1 week, 3 weeks, and 3 months after surgery (r = 0.87, 0.88, and 0.77, respectively). CONCLUSIONS Navigated TMS is a useful tool for identifying motor eloquent areas. The results of the present study have demonstrated the predictive value of nTMS in upper-extremity motor function recovery from postsurgical neurological deficits. The longer DHS-L and positive nTMS-MEP at 1 week after surgery have prognostic values of better recovery from postsurgical neurological deficits.


Asunto(s)
Neoplasias Encefálicas/cirugía , Glioma/cirugía , Paresia/diagnóstico , Complicaciones Posoperatorias/diagnóstico , Estimulación Magnética Transcraneal , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Recuperación de la Función , Adulto Joven
4.
J Neurosurg Spine ; 26(2): 183-189, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27689422

RESUMEN

OBJECTIVE This study is a retrospective case series involving C1-2 spinal cord stimulation in patients with complex regional pain syndrome (CRPS) under general endotracheal anesthesia. Currently, C1-2 paddle lead placement is an accepted practice, which provides effective cervical stimulation to ameliorate upper-extremity and sometimes lower-extremity symptoms experienced by patients with CRPS. However, this technique must be performed under general endotracheal anesthesia rather than in an awake or semiconscious state due to intraoperative safety concerns and patient comfort. The authors aim to provide additional data to support the following novel technique: the use of somatosensory evoked potential (SSEP) diminution data to assist with proper midline placement of C1-2 leads under general anesthesia. METHODS SSEP median nerve (MN) and posterior tibial nerve (PTN) data were collected from 6 patients undergoing placement of C1-2 leads under general anesthesia. Fluoroscopy was used as an initial guide for proper anatomical midline placement. This was followed by the activation of the spinal cord stimulator and simultaneous collection of primarily MN SSEPs as well as PTN SSEPs for physiological midline placement. Unilateral and bilateral reductions in SSEPs assisted with the correct lateralization of the lead to ensure effective postoperative coverage according to the patient's individual preoperative symptoms. RESULTS Six patients were monitored using SSEPs and repeatable, reliable MN and PTN baseline responses were obtained from all. A reduction in amplitude ranging from 5% to 87% was observed, confirming inhibition of dorsal column conduction, and an average pain relief of 63% at short-term and 64% at long-term follow-up was recorded with 6 of 6 and 5 of 6 patients responding, respectively. CONCLUSIONS Intraoperative SSEP collision study testing appears to be a safe technique to monitor placement of C1-2 paddle leads intraoperatively under general anesthesia.


Asunto(s)
Síndromes de Dolor Regional Complejo/terapia , Monitorización Neurofisiológica Intraoperatoria/métodos , Procedimientos Neuroquirúrgicos/métodos , Estimulación de la Médula Espinal , Adulto , Anciano , Anestesia General , Vértebras Cervicales , Síndromes de Dolor Regional Complejo/diagnóstico por imagen , Síndromes de Dolor Regional Complejo/fisiopatología , Potenciales Evocados Somatosensoriales , Femenino , Fluoroscopía/métodos , Estudios de Seguimiento , Humanos , Neuroestimuladores Implantables , Masculino , Nervio Mediano/fisiopatología , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos/instrumentación , Estudios Retrospectivos , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiopatología , Médula Espinal/cirugía , Estimulación de la Médula Espinal/instrumentación , Estimulación de la Médula Espinal/métodos , Cirugía Asistida por Computador/métodos , Nervio Tibial/fisiopatología
5.
J Neurosurg ; 126(6): 1951-1958, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27662531

RESUMEN

OBJECTIVE The aim of this study was to determine the most effective electrode montage to elicit lower-extremity transcranial motor evoked potentials (LE-tMEPs) using a minimum stimulation current. METHODS A realistic 3D head model was created from T1-weighted images. Finite element methods were used to visualize the electric field in the brain, which was generated by transcranial electrical stimulation via 4 electrode montage models. The stimulation threshold level of LE-tMEPs in 52 patients was also studied in a practical clinical setting to determine the effects of each electrode montage. RESULTS The electric field in the brain radially diffused from the brain surface at a maximum just below the electrodes in the finite element models. The Cz-inion electrode montage generated a centrally distributed high electric field with a current direction longitudinal and parallel to most of the pyramidal tract fibers of the lower extremity. These features seemed to be effective in igniting LE-tMEPs. Threshold level recordings of LE-tMEPs revealed that the Cz-inion electrode montage had a lower threshold on average than the C3-C4 montage, 76.5 ± 20.6 mA and 86.2 ± 20.6 mA, respectively (31 patients, t = 4.045, p < 0.001, paired t-test). In 23 (74.2%) of 31 cases, the Cz-inion montage could elicit LE-tMEPs at a lower threshold than C3-C4. CONCLUSIONS The C3-C4 and C1-C2 electrode montages are the standard for tMEP monitoring in neurosurgery, but the Cz-inion montage showed lower thresholds for the generation of LE-tMEPs. The Cz-inion electrode montage should be a good alternative for LE-tMEP monitoring when the C3-C4 has trouble igniting LE-tMEPs.


Asunto(s)
Potenciales Evocados Motores , Estimulación Transcraneal de Corriente Directa , Electrodos , Cabeza , Humanos , Extremidad Inferior
6.
J Neurosurg Spine ; 21(5): 799-804, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192376

RESUMEN

Intramedullary spinal cord hematomas are a rare neurosurgical pathological entity typically arising from vascular and neoplastic lesions. Endometriosis is an extremely rare cause of intramedullary spinal cord hematoma, with only 5 previously reported cases in the literature. Endometriosis is characterized by ectopic endometrial tissue, typically located in the female pelvic cavity, that causes a cyclical pain syndrome, bleeding, and infertility. In the rare case of intramedullary endometriosis of the spinal cord, symptoms include cyclical lower-extremity radiculopathies and voiding difficulties, and can acutely cause cauda equina syndrome. The authors report a case of endometriosis of the conus medullaris, the first to include radiological, intraoperative, and histopathological imaging. A brief review of the literature is also presented, with discussion including etiological theories surrounding intramedullary endometriosis.


Asunto(s)
Endometriosis/complicaciones , Radiculopatía/etiología , Enfermedades de la Médula Espinal/etiología , Médula Espinal , Adulto , Diagnóstico Diferencial , Electromiografía , Endometriosis/patología , Endometriosis/cirugía , Potenciales Evocados Somatosensoriales , Femenino , Humanos , Inmunohistoquímica , Vértebras Lumbares , Imagen por Resonancia Magnética , Radiculopatía/patología , Radiculopatía/cirugía , Enfermedades de la Médula Espinal/patología , Enfermedades de la Médula Espinal/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...