Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Bioorg Med Chem ; 110: 117827, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964169

RESUMEN

Histone deacetylase inhibitors (HDACis) show beneficial effects on different hematological malignancy subtypes. However, their impacts on treating solid tumors are still limited due to diverse resistance mechanisms. Recent studies have found that the feedback activation of BRD4-LIFR-JAK1-STAT3 pathway after HDACi incubation is a vital mechanism inducing resistance of specific solid tumor cells to HDACis. This review summarizes the recent development of multi-target HDACis that can concurrently block BRD4-LIFR-JAK1-STAT3 pathway. Moreover, our findings hope to shed novel lights on developing novel multi-target HDACis with reduced BRD4-LIFR-JAK1-STAT3-mediated drug resistance in some tumors.

2.
Comput Biol Med ; 179: 108797, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968765

RESUMEN

Stüve-Wiedemann syndrome (SWS), a rare autosomal recessive disorder, characterized by diminutive size, curvature of the elongated bones, bent fingers, episodes of heightened body temperature, respiratory distress or periods of breath-holding, and challenges with feeding, especially causes fatality in infants. SWS is an outcome of potential missense mutations in the leukemia inhibitory factor receptor gene reflected as numerous amino acid mutations at protein level. Employing in silico tools and techniques like mutational screening with Pred_MutHTP, I-Mutant2.0, PANTHER.db, PolyPhen, to classify mutations as deleterious/destabilizing, in conjunction with experimental data analysis, P136A and S279P emerged as 'effect'-causing mutations. Pre-existing knowledge suggests, SWS progression is effectuated conformationally altered and dysfunctional LIFR, unable to bind to LIF and further form the LIF/LIFR/gp130 signalling complex. To gain functional insights into the effect of the said mutations on the wild type protein, an all-atom, explicit, solvent molecular dynamics simulation was performed following docking approaches. Consequently, referring to the RMSD, RMSF, protein dynamic network analysis, energy landscape plots and domain motion analysis, it was revealed that unbound LIFR_WT was more prone to LIF binding as usual whereas the mutants exhibited considerable domain closure to inhibit LIF binding. We conducted binding affinity analysis via MM/GBSA and dissociation constant estimation after LIFR-LIF docking and found the WT_complex to be more stable and compact as a whole when compared to the flexible mutant complexes thus being associated with SWS. Our study offers a route for understanding molecular level implications upon LIFR mutations which opens an avenue for therapeutic interventions.

3.
Adv Sci (Weinh) ; : e2405332, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924373

RESUMEN

Radiotherapy is essential for treating colorectal cancer (CRC), especially in advanced rectal cancer. However, the low radiosensitivity of CRC cells greatly limits radiotherapy efficacy. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNA that primarily direct post-transcriptional modifications of ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and other cellular RNAs. While snoRNAs are involved in tumor progression and chemoresistance, their association with radiosensitivity remains largely unknown. Herein, SNORA28 is shown highly expressed in CRC and is positively associated with poor prognosis. Furthermore, SNORA28 overexpression enhances the growth and radioresistance of CRC cells in vitro and in vivo. Mechanistically, SNORA28 acts as a molecular decoy that recruits bromodomain-containing protein 4 (BRD4), which increases the level of H3K9 acetylation at the LIFR promoter region. This stimulates LIFR transcription, which in turn triggers the JAK1/STAT3 pathway, enhancing the proliferation and radioresistance of CRC cells. Overall, these results highlight the ability of snoRNAs to regulate radiosensitivity in tumor cells and affect histone acetylation modification in the promoter region of target genes, thus broadening the current knowledge of snoRNA biological functions and the mechanism underlying target gene regulation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38818582

RESUMEN

Systemic therapies, the ultimate strategies for patients with advanced hepatocellular carcinoma (HCC), are suffering from serious clinical challenges, such as the occurrence and development of drug resistance. Treatment resistance aggravates tumor progression partly by inducing tumor metastasis. Regorafenib-resistant HCC cells exhibit a highly striking metastatic phenotype, but the detailed mechanisms underlying these aggressive behaviors remain elusive. Here, we conduct transcriptome sequencing analysis to identify COL5A2 as a crucial driver of the metastatic characteristics of regorafenib-resistant HCC cells. COL5A2 is aberrantly highly expressed in resistant cells, and its genetic depletion significantly suppresses proliferation, migration, invasion, vasculogenic mimicry (VM) formation and lung metastasis in vitro and in vivo, concomitant with the downregulation of VE-cadherin, EphA2, Twist1, p-p38 and p-STAT3 expressions. LIFR is confirmed to be an essential downstream molecule of COL5A2, and its expression is observably elevated by COL5A2 depletion. Ectopic overexpression of LIFR drastically attenuates the proliferation, migration, invasion and VM of regorafenib-resistant cells and represses the expressions of VM-related molecules and the activation of p38/STAT3 signaling pathway. Interestingly, rescue experiments show that the inhibition of the above aggressive features of resistant cells by COL5A2 loss is clearly alleviated by silencing of LIFR. Collectively, our results reveal that COL5A2 promotes the ability of regorafenib-resistant HCC cells to acquire a metastatic phenotype by attenuating LIFR expression and suggest that therapeutic regimens targeting the COL5A2/LIFR axis may be beneficial for HCC patients with therapeutic resistance.

5.
J Biol Chem ; 300(5): 107251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569939

RESUMEN

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Asunto(s)
Factor Neurotrófico Ciliar , Receptor gp130 de Citocinas , Interleucina-6 , Transducción de Señal , Animales , Humanos , Ratones , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Modelos Moleculares , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores OSM-LIF/metabolismo , Receptores OSM-LIF/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Ratones Endogámicos C57BL
6.
Biochem Pharmacol ; 223: 116134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494064

RESUMEN

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Asunto(s)
Interleucina-6 , Receptores de Citocinas , Humanos , Carcinogénesis , Factor Inhibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Receptores OSM-LIF
7.
Front Immunol ; 15: 1352583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455043

RESUMEN

Objective: The relationships between circulating inflammatory proteins and COVID-19 have been observed in previous cohorts. However, it is not unclear which circulating inflammatory proteins may boost the risk of or protect against COVID-19. Methods: We performed Mendelian randomization (MR) analysis using GWAS summary result of 91 circulating inflammation-related proteins (N = 14,824) to assess their causal impact on severe COVID-19. The COVID-19 phenotypes encompassed both hospitalized (N = 2,095,324) and critical COVID-19 (N = 1,086,211). Moreover, sensitivity analyses were conducted to evaluate the robustness and reliability. Results: We found that seven circulating inflammatory proteins confer positive causal effects on severe COVID-19. Among them, serum levels of IL-10RB, FGF-19, and CCL-2 positively contributed to both hospitalized and critical COVID-19 conditions (OR: 1.10~1.16), while the other 4 proteins conferred risk on critical COVID-19 only (OR: 1.07~1.16), including EIF4EBP1, IL-7, NTF3, and LIF. Meanwhile, five proteins exert protective effects against hospitalization and progression to critical COVID-19 (OR: 0.85~0.95), including CXCL11, CDCP1, CCL4/MIP, IFNG, and LIFR. Sensitivity analyses did not support the presence of heterogeneity in the majority of MR analyses. Conclusions: Our study revealed risk and protective inflammatory proteins for severe COVID-19, which may have vital implications for the treatment of the disease.


Asunto(s)
COVID-19 , Humanos , Reproducibilidad de los Resultados , Hospitalización , Inflamación , Análisis de la Aleatorización Mendeliana , Antígenos de Neoplasias , Moléculas de Adhesión Celular
8.
J Reprod Immunol ; 163: 104212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432052

RESUMEN

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.


Asunto(s)
Implantación del Embrión , Endometrio , Factor 1 Regulador del Interferón , Interferón Tipo I , Animales , Femenino , Bovinos , Endometrio/metabolismo , Endometrio/inmunología , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Implantación del Embrión/inmunología , Interferón Tipo I/metabolismo , Embarazo , Receptores OSM-LIF/metabolismo , Proteínas Gestacionales/metabolismo , Proteínas Gestacionales/genética , Activación Transcripcional , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/inmunología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38528801

RESUMEN

OBJECTIVES: Studies have investigated miR-125a for its predictable role in recurrent pregnancy loss (RPL) cases to regulate many biological events required for the maintenance of pregnancy by regulating its confirmed target genes LIFR, ERBB2 and STAT3. METHODS: The present study included 40 cases of women with at least two RPLs in ≤20 weeks of gestation against 40 healthy multiparous women without a previous history of abortion. Expression analysis of ERBB2, LIFR, STAT3 and miR-125a was conducted by quantitative real-time PCR (qPCR). RESULTS: The expression of miR-125a was significantly lower in the plasma of RPL cases (P = 0.0001) and showed a significantly increased mean expression level in product of conception (2.56-fold, P < 0.0001). Among the target gene of miR-125a, ERBB2 and STAT3 gene expression level was significantly increased (2.58-fold, P = 0.04; 1.87-fold, P = 0.025), respectively in RPL cases while the LIFR gene revealed comparable expression (P = 0.64). Furthermore, expression analysis of ERBB2 gene with respect to its regulatory miR-125a cases depicted a significant association (P = 0.0005). Kaplan-Meier survival analysis revealed cases with low miR-125a expression had significantly shorter time to miscarriages, (log-rank P = 0.02). Also, decreased expression of miR-125a significantly conferred >2-fold increased risk for RPL (HR = 2.34: P < 0.05). CONCLUSION: The overall conclusion of the study was that altered miR-125a expression may cause deregulation in target genes LIFR, ERBB2 and STAT3 resulting in adverse consequence in the outcome of pregnancy.

10.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139260

RESUMEN

Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.


Asunto(s)
Neoplasias Endometriales , Transducción de Señal , Humanos , Femenino , Receptores OSM-LIF/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Neoplasias Endometriales/tratamiento farmacológico
11.
Acta Pharm Sin B ; 13(6): 2601-2612, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425067

RESUMEN

Epigenetic therapies that cause genome-wide epigenetic alterations, could trigger local interplay between different histone marks, leading to a switch of transcriptional outcome and therapeutic responses of epigenetic treatment. However, in human cancers with diverse oncogenic activation, how oncogenic pathways cooperate with epigenetic modifiers to regulate the histone mark interplay is poorly understood. We herein discover that the hedgehog (Hh) pathway reprograms the histone methylation landscape in breast cancer, especially in triple-negative breast cancer (TNBC). This facilitates the histone acetylation caused by histone deacetylase (HDAC) inhibitors and gives rise to new therapeutic vulnerability of combination therapies. Specifically, overexpression of zinc finger protein of the cerebellum 1 (ZIC1) in breast cancer promotes Hh activation, facilitating the switch of H3K27 methylation (H3K27me) to acetylation (H3K27ac). The mutually exclusive relationship of H3K27me and H3K27ac allows their functional interplay at oncogenic gene locus and switches therapeutic outcomes. Using multiple in vivo breast cancer models including patient-derived TNBC xenograft, we show that Hh signaling-orchestrated H3K27me and H3K27ac interplay tailors combination epigenetic drugs in treating breast cancer. Together, this study reveals the new role of Hh signaling-regulated histone modifications interplay in responding to HDAC inhibitors and suggests new epigenetically-targeted therapeutic solutions for treating TNBC.

12.
J Transl Med ; 21(1): 290, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120549

RESUMEN

BACKGROUND: Oncostatin M (OSM) is a secreted cytokine of the interleukin (IL)-6 family that induces biological effects by activating functional receptor complexes of the common signal transducing component glycoprotein 130 (gp130) and OSM receptor ß (OSMR) or leukaemia inhibitory factor receptor (LIFR), which are mainly involved in chronic inflammatory and cardiovascular diseases. The effect and underlying mechanism of OSM/OSMR/LIFR on the development of cardiac hypertrophy remains unclear. METHODS AND RESULTS: OSMR-knockout (OSMR-KO) mice were subjected to aortic banding (AB) surgery to establish a model of pressure overload-induced cardiac hypertrophy. Echocardiographic, histological, biochemical and immunological analyses of the myocardium and the adoptive transfer of bone marrow-derived macrophages (BMDMs) were conducted for in vivo studies. BMDMs were isolated and stimulated with lipopolysaccharide (LPS) for the in vitro study. OSMR deficiency aggravated cardiac hypertrophy, fibrotic remodelling and cardiac dysfunction after AB surgery in mice. Mechanistically, the loss of OSMR activated OSM/LIFR/STAT3 signalling and promoted a proresolving macrophage phenotype that exacerbated inflammation and impaired cardiac repair during remodelling. In addition, adoptive transfer of OSMR-KO BMDMs to WT mice after AB surgery resulted in a consistent hypertrophic phenotype. Moreover, knockdown of LIFR in myocardial tissue with Ad-shLIFR ameliorated the effects of OSMR deletion on the phenotype and STAT3 activation. CONCLUSIONS: OSMR deficiency aggravated pressure overload-induced cardiac hypertrophy by modulating macrophages and OSM/LIFR/STAT3 signalling, which provided evidence that OSMR might be an attractive target for treating pathological cardiac hypertrophy and heart failure.


Asunto(s)
Interleucina-6 , Receptores OSM-LIF , Receptores de Oncostatina M , Transducción de Señal , Animales , Ratones , Cardiomegalia , Macrófagos , Oncostatina M/genética , Receptores OSM-LIF/genética , Receptores de Oncostatina M/genética
13.
J Endocrinol ; 258(1)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078922

RESUMEN

Leukaemia inhibitory factor (LIF) is a cytokine belonging to the interleukin-6 family that is important at the reproductive level in the uterine implantation process. However, there is very little evidence regarding its effect at the ovarian level. The aim of this work was to study the local involvement of the LIF/LIFRß system in follicular development and steroidogenesis in rat ovaries. To carry out this research, LIF/LIFR/GP130 transcript and protein levels were measured in fertile and sub-fertile rat ovaries, and in vitro experiments were performed to assess STAT3 activation. Then, in in vivo experiments, LIF was administered chronically and locally for 28 days to the ovaries of rats by means of an osmotic minipump to enable us to evaluate the effect on folliculogenesis and steroidogenesis. It was determined by quantitative polymerase chain reaction and western blot that LIF and its receptors are present in fertile and sub-fertile ovaries and that LIF varies during the oestrous cycle, being higher during the oestrus and meta/dioestrus stages. In addition to this, it was found that LIF can activate STAT3 pathways and cause pSTAT3 formation. It was also observed that LIF decreases the number and size of preantral and antral follicles without altering the number of atretic antral follicles and can increase the number of corpora lutea, with a notable increase in the levels of progesterone (P4). It is therefore possible to infer that LIF exerts an important effect in vivo on folliculogenesis, ovulation and steroidogenesis, specifically the synthesis of P4.


Asunto(s)
Folículo Ovárico , Ovario , Femenino , Ratas , Animales , Factor Inhibidor de Leucemia/farmacología , Cuerpo Lúteo , Ovulación
14.
Front Oncol ; 13: 1140730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998446

RESUMEN

Introduction: The leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1). Methods: Herein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. Results: The transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM. Discussion: BAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.

15.
Front Oncol ; 13: 1118906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925915

RESUMEN

Background: Leukemia inhibitory factor (LIF) exhibits significant tumor-promoting function, while its cognate receptor (LIFR) is considered to act as either a tumor promoter or suppressor. Dysregulation of LIF and LIFR is associated with the initiation, progression and metastasis of multiple cancer entities. Although increasing numbers of studies are revealing an indispensable critical role of LIFR in tumorigenesis for various different cancers, no systematic analysis of LIFR has appeared thus far. Methods: Here, we comprehensively analyzed the expression profile and prognostic value of LIFR, and correlations between LIFR and the infiltration of immune cells and clinicopathological parameters across different tumor types using several bioinformatic tools. The expression profile of LIFR in various tumor types and clinical stages was investigated using the TIMER2 and GEPIA2 databases. Genetic alternations of LIFR were extracted from cBioPortal. The prognostic value of LIFR was assessed using GEPIA2 and Sanger box databases, and correlations between LIFR expression and immune infiltration were analyzed using the CIBERSORT method and TIMER2 database. The correlations between LIFR expression and immune and stromal scores were assessed using ESTIMATE. We also analyzed correlations between LIFR and immunoregulators. Finally, we detected an effect of LIFR on Uterine Corpus Endometrial Carcinoma (UCEC) and evaluated the expression level of LIFR in clinical UCEC samples. Results: Aberrant expression of LIFR in cancers and its prognosis ability, especially in UCEC was documented. Significantly lower levels of LIFR expression level correlated with better prognosis in multiple tumor types. LIFR expression was positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment. Additionally, LIFR expression was strongly associated with the presence of immune modulators and checkpoint genes. Overexpression of LIFR suppressed the migration and invasion of UCEC cells in vitro. Conclusion: Our pan-cancer detection data provided a novel understanding of the roles of LIFR in oncogenesis.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36924393

RESUMEN

OBJECTIVE OF THE STUDY: To explore the association of leukemia inhibitory factor receptor (LIFR) gene variant rs3099124, ovarian steroids, and leukemia inhibitory factor with unexplained infertility in Pakistani females. METHODOLOGY: A case-control investigation in which eighty-one (81) females with unexplained infertility and one hundred and sixty-two (162) fertile counterparts (age and body mass index compared) were recruited between October 2016 and 2018. Ten milliliters of venous blood was collected from all participants. "Genomic DNA" was taken out from lymphocytes in peripheral blood samples. "Tetra Amplification Refractory Mutation System Polymerase Chain Reaction (T-ARMS-PCR)" was constructed through software "Primer-I". Amplification was carried out by "T-ARMS-PCR" followed by subsequent sequencing for confirmation and extensive consonance. Estradiol, Progesterone and Leukemia Inhibitory Factor (LIF) were measured in serum by ELISA. RESULTS: Statistically significant difference was noticed in genotype frequency in "LIFR-gene variant; rs3099124" (χ2 = 28.222, P value < 0.01) between research participants. Although, rs "3099124" "AA" (OR = 0.000; 95%CI = 0-0) and "GA" genotypes (OR = 0.525; 95%CI = 0.226-1.22) showed non-significant safety/protection against unexplained infertility yet minor/risk allele "A" frequency was greater in women with unexplained infertility suggesting a possible explanation of implantation failure. LIF concentration varied between fertile and infertile groups (χ2 = 9.857, P < 0.05) revealing significant threat of unexplained infertility in women with decreased LIF concentration (OR = 2.316, 95%CI = 1.214-4.416). Progesterone was significantly related to unexplained infertility in both study groups (χ2 = 20.347, P < 0.05). High progesterone reduced the possibility of unexplained infertility (OR = 0.306; 95% CI = 0.166-0.567). CONCLUSION: LIFR gene variation (rs3099124) and reduced LIF secretion may cause implantation failure in women with unexplained infertility.


Asunto(s)
Infertilidad Femenina , Femenino , Humanos , Masculino , Infertilidad Femenina/genética , Progesterona , Factor Inhibidor de Leucemia/genética , Endometrio , Receptores OSM-LIF
17.
Cells ; 11(21)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359879

RESUMEN

Pancreatic cancer is a leading cause of cancer mortality and is projected to become the second-most common cause of cancer mortality in the next decade. While gene-wide association studies and next generation sequencing analyses have identified molecular patterns and transcriptome profiles with prognostic relevance, therapeutic opportunities remain limited. Among the genes that are upregulated in pancreatic ductal adenocarcinomas (PDAC), the leukaemia inhibitory factor (LIF), a cytokine belonging to IL-6 family, has emerged as potential therapeutic candidate. LIF is aberrantly secreted by tumour cells and promotes tumour progression in pancreatic and other solid tumours through aberrant activation of the LIF receptor (LIFR) and downstream signalling that involves the JAK1/STAT3 pathway. Since there are no LIFR antagonists available for clinical use, we developed an in silico strategy to identify potential LIFR antagonists and drug repositioning with regard to LIFR antagonists. The results of these studies allowed the identification of mifepristone, a progesterone/glucocorticoid antagonist, clinically used in medical abortion, as a potent LIFR antagonist. Computational studies revealed that mifepristone binding partially overlapped the LIFR binding site. LIF and LIFR are expressed by human PDAC tissues and PDAC cell lines, including MIA-PaCa-2 and PANC-1 cells. Exposure of these cell lines to mifepristone reverses cell proliferation, migration and epithelial mesenchymal transition induced by LIF in a concentration-dependent manner. Mifepristone inhibits LIFR signalling and reverses STAT3 phosphorylation induced by LIF. Together, these data support the repositioning of mifepristone as a potential therapeutic agent in the treatment of PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Embarazo , Femenino , Humanos , Receptores OSM-LIF/genética , Mifepristona/farmacología , Mifepristona/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Reposicionamiento de Medicamentos , Carcinoma Ductal Pancreático/patología , Antagonistas de Hormonas/farmacología , Neoplasias Pancreáticas
18.
Clin Epigenetics ; 14(1): 138, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316703

RESUMEN

BACKGROUND: Aberrant DNA methylation is an epigenetic marker that has been linked to the pathogenesis of colorectal cancer (CRC). Long noncoding RNAs (lncRNAs) have been increasingly identified to be associated with tumorigenic processes of CRC. Identifying epigenetically dysregulated lncRNAs and characterizing their effects during carcinogenesis are focuses of cancer research. METHODS: Differentially methylated loci and expressed lncRNAs were identified by integrating DNA methylome and transcriptome analyses using The Cancer Genome Atlas database. Bisulfite sequencing PCR (BSP) was performed to analyze LIFR-AS1 promoter methylation status. The functional roles of LIFR-AS1 in CRC were determined by in vitro and in vivo experiments. RESULTS: We identified a novel hypermethylated lncRNA, LIFR-AS1, that was downregulated and associated with tumorigenesis, metastasis, and poor prognosis in CRC. High methylation burden of LIFR-AS1 indicated a poor survival of CRC patients. Promoter hypermethylation of LIFR-AS1 in tumor tissues was confirmed by BSP. Functional assays revealed that LIFR-AS1 could competitively bind to hsa-miR-29b-3p, and repressed colon cancer cell proliferation, colony formation and invasion. LIFR-AS1 also inhibited tumor growth in a mouse xenograft model of CRC. CONCLUSIONS: Our results showed that the identified DNA methylation-dysregulated lncRNAs may be potential biomarkers and highlighted a role for LIFR-AS1 as a tumor suppressor in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Metilación de ADN , Detección Precoz del Cáncer , MicroARNs/genética , Proliferación Celular/genética , Carcinogénesis/genética , Línea Celular Tumoral , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo
19.
J Clin Lab Anal ; 36(8): e25470, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35778954

RESUMEN

BACKGROUND: Serous ovarian carcinoma (SOC) is a common malignant tumor in female reproductive system. Long noncoding RNA (lncRNA) LIFR-AS1 is a tumor suppressor gene in colorectal cancer, but its effect and underlying mechanism in SOC are still unclear. Therefore, this study focuses on unveiling the regulatory mechanism of LIFR-AS1 in SOC. METHODS: The relationship between LIFR-AS1 expression and prognosis of SOC patients was analyzed by TCGA database and Starbase, and then, the LIFR-AS1 expression in SOC tissues and cells was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Besides, the relationship between LIFR-AS1 and clinical characteristics was analyzed. Also, the effects of LIFR-AS1 on the biological behaviors of SOC cells were measured by Cell Counting Kit-8, colony formation, and wound-healing and Transwell assays, respectively. Western blot and qRT-PCR were employed to determine the protein expressions of genes related to proliferation (PCNA), apoptosis (cleaved caspase-3), epithelial-mesenchymal transition (E-cadherin, N-cadherin, and Snail). RESULTS: LIFR-AS1 was lowly expressed in SOC, which was correlated with the poor prognosis of SOC patients. Low expression of LIFR-AS1 in SOC was associated with the tumor size, clinical stage, lymph node metastasis, and distant metastasis. LIFR-AS1 overexpression promoted the expressions of cleaved caspase-3 and E-cadherin while suppressing the malignant behaviors (proliferation, migration, and invasion) of SOC cells, the expressions of PCNA, N-cadherin, and Snail. Besides, silencing LIFR-AS1 exerted the effects opposite to overexpressed LIFR-AS1. CONCLUSION: LIFR-AS1 overexpression inhibits biological behaviors of SOC cells, which may be a new therapeutic method.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Cadherinas , Carcinoma Epitelial de Ovario/genética , Caspasa 3/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Antígeno Nuclear de Célula en Proliferación/genética , ARN Largo no Codificante/genética
20.
Front Oncol ; 12: 939969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847866

RESUMEN

Gastric cancer (GC) is the third cause of cancer-related mortality worldwide. Nevertheless, because GC screening programs are not cost-effective, most patients receive diagnosis in the advanced stages, when surgical options are limited. Peritoneal dissemination occurs in approximately one-third of patients with GC at the diagnosis and is a strong predictor of poor outcome. Despite the clinical relevance, biological and molecular mechanisms underlying the development of peritoneal metastasis in GC remain poorly defined. Here, we report results of a high-throughput sequencing of transcriptome expression in paired samples of non-neoplastic and neoplastic gastric samples from 31 patients with GC with or without peritoneal carcinomatosis. The RNA-seq analysis led to the discovery of a group of highly upregulated or downregulated genes, including the leukemia inhibitory factor receptor (LIFR) and one cut domain family member 2 (ONECUT2) that were differentially modulated in patients with peritoneal disease in comparison with patients without peritoneal involvement. Both LIFR and ONECUT2 predicted survival at univariate statistical analysis. LIFR and its major ligand LIF belong to the interleukin-6 (IL-6) cytokine family and have a central role in immune system regulation, carcinogenesis, and dissemination in several human cancers. To confirm the mechanistic role of the LIF/LIFR pathway in promoting GC progression, GC cell lines were challenged in vitro with LIF and a LIFR inhibitor. Among several GC cell lines, MKN45 cells displayed the higher expression of the receptor, and their exposure to LIF promotes a concentration-dependent proliferation and epithelial-mesenchymal transition (EMT), as shown by modulation of relative expression of E-cadherin/vimentin along with JAK and STAT3 phosphorylation and acquisition of a migratory phenotype. Furthermore, exposure to LIF promoted the adhesion of MKN45 cells to the peritoneum in an ex vivo assay. These effects were reversed by the pharmacological blockade of LIFR signaling. Together, these data suggest that LIFR might have a major role in promoting disease progression and peritoneal dissemination in patients with GC and that development of LIF/LIFR inhibitors might have a role in the treatment of GC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...