Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell Rep Methods ; : 100863, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39317191

RESUMEN

Virtual reality (VR) has emerged as a powerful tool for investigating neural mechanisms of decision-making, spatial cognition, and navigation. In many head-fixed VRs for rodents, animals locomote on spherical treadmills that provide rotation information in two axes to calculate two-dimensional (2D) movement. On the other hand, zebrafish in a submerged head-fixed VR can move their tail to enable movement in 2D VR environment. This motivated us to create a VR system for adult zebrafish to enable 2D movement consisting of forward translation and rotations calculated from tail movement. Besides presenting the VR system, we show that zebrafish can learn a virtual Morris water maze-like (VMWM) task in which finding an invisible safe zone was necessary for the zebrafish to avoid an aversive periodic mild electric shock. Results show high potential for our VR system to be combined with optical imaging for future studies to investigate spatial learning and navigation.

2.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001056

RESUMEN

In the process of metal wire and additive manufacturing, due to changes in temperature, humidity, current, voltage, and other parameters, as well as the failure of machinery and equipment, a failure may occur in the manufacturing process that seriously affects the current situation of production efficiency and product quality. Based on the demand for monitoring of the key impact parameters of additive manufacturing, this paper develops a parameter monitoring and prediction system for the additive manufacturing feeding process to provide a basis for future fault diagnosis. The fault diagnosis and prediction system for metal wire supply and additive manufacturing utilizes STM 32 as its core, enabling the capture and transmission of temperature, humidity, current, and voltage data. The upper computer system, designed on the LabVIEW 2019 virtual instrument platform, incorporates an LSTM neural network model and facilitates a connection between LabVIEW and MATLAB 2019 to achieve the prediction function. The monitoring and prediction system established in this study is intended to provide basic research assistance in the field of fault diagnosis.

3.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065838

RESUMEN

In the present paper, an affordable innovative physical experimental equipment consisting of an upper computer, an ultrasonic sensor module, and an Arduino microcontroller has been designed. The relationship between the position of the slider fixed on two springs and time is measured by using the ultrasonic sensor module. A system for slider motion data and image acquisition is constructed by using the LabVIEW interface of Arduino UNO R3. The purpose of this experiment is to demonstrate and interpret the propagation of waves represented by harmonic motion. The spring oscillator system including a slider and two springs is measured and recorded, and the motion can be realized using curve fitting to the wave equation in Sigmaplot. The vibration periods obtained from experimental measurements and curve fitting of the wave equation are 1.130 s and 1.165 s, respectively. The experimental data are in good agreement with the theoretical model. The experimental measurement results show that the maximum kinetic energy is 0.0792 J, the maximum potential energy is 0.0795 J, and the total energy at the position of half the amplitude is 0.0791 J. The results verify the mechanical energy conservation of spring oscillator system in a short time. This self-made instrument has improved the visualization and the automation level of the corresponding experiments.

4.
Micromachines (Basel) ; 15(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398999

RESUMEN

Isothermal amplification methods have become popular in research due to the simplicity of the technology needed to run the reactions. Specifically, loop-mediated isothermal amplification (LAMP) has been widely used for various applications since first reported in 2000. LAMP reactions are commonly monitored with the use of colorimetry. Although color changes associated with positive amplification are apparent to the naked eye, this detection method is subjective due to inherent differences in visual perception from person to person. The objectivity of the colorimetric detection method may be improved by programmed image capture over time with simultaneous heating. As such, the development of a novel, one-step, automated, and integrated analysis system capable of performing these tasks in parallel is detailed herein. The device is adaptable to multiple colorimetric dyes, cost-effective, 3D-printed for single-temperature convective heating, and features an easy-to-use LabVIEW software program developed for automated image analysis. The device was optimized and subsequently validated using four messenger-RNA targets and mock forensic samples. The performance of our device was determined to be comparable to that of a conventional thermal cycler and smartphone image analysis, respectively. Moreover, the outlined system is capable of objective colorimetric analysis, with exceptional throughput of up to 96 samples at once.

5.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896587

RESUMEN

This article presents a comprehensive system for testing and verifying shunt active power filter control methods. The aim of this experimental platform is to provide tools to a user to objectively compare the individual control methods. The functionality of the system was verified on a hardware platform using least mean squares and recursive least squares algorithms. In the experiments, an average relative suppression of the total harmonic distortion of 22% was achieved. This article describes the principle of the shunt active power filter, the used experimental platform of the controlled current injection source, its control system based on virtual instrumentation and control software and ends with experimental verification. The discussion of the paper outlines the extension of the experimental platform with the cRIO RTOS control system to reduce the latency of reference current generation and further planned research including motivation.

6.
J Magn Reson ; 355: 107556, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37751649

RESUMEN

We present a software solution developed in LabVIEW for a home-built High-Frequency Electron Paramagnetic Resonance (HF-EPR) spectrometer. A modular approach was applied to control the spectrometer subsystems and simplify the adaptation to hardware changes during the development. The solution implements measuring procedures for conventional Continuous Wave EPR (CW-EPR), Frequency-Swept EPR (FS-EPR), and Two-Dimensional EPR (2D-EPR) mapping, which are relevant in different cases. The software's automation capabilities were tested in several trial measurements to obtain CW-EPR spectra of Silicon Carbide doped by vanadium (SiC + V) at various temperatures and microwave frequencies, multi-frequency spectra via 2D-EPR mapping, and dense FS-EPR data of a lithium phthalocyanine crystal rotated in a magnetic field. Several prospective modifications of the software are discussed in the conclusion. A modular character allows the easy re-use of code portions in other experimental setups. The spectrometer and the software are currently deployed and utilized in a laboratory of EPR spectroscopy at Central European Institute of Technology (CEITEC) in Brno, and data obtained by it has been already used in a number of publications.

7.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631623

RESUMEN

Ultrasound is widely used in medical and engineering inspections due to its non-destructive and easy-to-use characteristics. However, the complex internal structure of plant stems presents challenges for ultrasound testing. The density and thickness differences in various types of stems can cause different attenuation of ultrasonic signal propagation and the formation of different echo locations. To detect structural changes in plant stems, it is crucial to acquire complete ultrasonic echo RF signals. However, there is currently no dedicated ultrasonic RF detection equipment for plant stems, and some ultrasonic acquisition equipment has limited memory capacity that cannot store a complete echo signal. To address this problem, this paper proposes a double-layer multiple-timing trigger method, which can store multiple trigger sampling memories to meet the sampling needs of different plant stems with different ultrasonic echo locations. The method was tested in experiments and found to be effective in acquiring complete ultrasonic RF echo signals for plant stems. This approach has practical significance for the ultrasonic detection of plant stems.

8.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447798

RESUMEN

The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.


Asunto(s)
Tecnología de Fibra Óptica , Fibras Ópticas , Tecnología de Fibra Óptica/métodos
9.
Micromachines (Basel) ; 14(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37421056

RESUMEN

Resonant microcantilevers have the advantages of ultra-high heating rates, analysis speed, ultra-low power consumption, temperature programming, and trace sample analysis when applied in TGA. However, the current single-channel testing system for resonant microcantilevers can only detect one sample at a time, and need two program heating tests to obtain the thermogravimetric curve of a sample. In many cases, it is desirable to obtain the thermogravimetric curve of a sample with a single-program heating test and to simultaneously detect multiple microcantilevers for testing multiple samples. To address this issue, this paper proposes a dual-channel testing method, where a microcantilever is used as a control group and another microcantilever is used as an experimental group, to obtain the thermal weight curve of the sample in a single program temperature ramp test. With the help of the LabVIEW's convenient parallel running method, the functionality of simultaneously detecting two microcantilevers is achieved. Experimental validation showed that this dual-channel testing system can obtain the thermogravimetric curve of a sample with a single program heating test and detect two types of samples simultaneously.

10.
Sensors (Basel) ; 23(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299948

RESUMEN

This article is about the design, development and validation of a new monitoring architecture for individual cells and stacks to facilitate the study of proton exchange fuel cells. The system consists of four main elements: input signals, signal processing boards, analogue-to-digital converters (ADCs) and a master terminal unit (MTU). The latter integrates a high-level graphic user interface (GUI) software developed by National Instruments LABVIEW, while the ADCs are based on three digital acquisition units (DAQs). Graphs showing the temperature, currents and voltages in individual cells as well as stacks are integrated for ease of reference. The system validation was carried out both in static and dynamic modes of operation using a Ballard Nexa 1.2 kW fuel cell fed by a hydrogen cylinder, with a Prodigit 32612 electronic load at the output. The system was able to measure the voltage distributions of individual cells, and temperatures at different equidistant points of the stack both with and without an external load, validating its use as an indispensable tool for the study and characterization of these systems.


Asunto(s)
Protones , Programas Informáticos , Monitoreo Fisiológico , Hidrógeno , Procesamiento de Señales Asistido por Computador
11.
Anal Sci ; 39(9): 1607-1612, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37223873

RESUMEN

The use of an RGB-tracking chart for monitoring the reduction of indigo (color changes) based on the LabVIEW machine vision is demonstrated for the first time. In contrast to a normal analytical chromatographic chart, the time scale is used on the X-axis, but the sum of "RGB-pixels" is used on the Y-axis, instead of "signal intensity". The RGB-tracking chart was obtained from an investigation of the process involved in the reduction of indigo, in which a PC camera was used as a detector and LabVIEW machine vision was simultaneously operated. As a result, when sodium dithionite (Na2S2O4) and yeast were used, respectively, during the indigo-reduction processes, two types of reduction processes were found; the optimized timing for dyeing can be easily determined from the RGB-tracking charts. Furthermore, based on the changes in HSV (hue, saturation, lightness), the use of sodium dithionite provides a higher number of hue and saturation when clothes & fabric were dyed. In contrast to this, a longer time was required for the yeast solution to reach the same high number for hue and saturation. After comparing several series of dyed fabrics, we found that the use of an RGB-tracking chart is indeed a reliable novel tool for measuring color changes that occur during the chemical reactions that are associated with this process.

12.
MethodsX ; 10: 102170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091955

RESUMEN

The thermo-acoustic instabilities developed inside the combustor causes serious structural damage and reduces the life of power producing devices. The present work involves experimental investigation to assess effect of radial micro-jets air injection on thermo-acoustic instabilities and temperature in lateral planes. A co-axial pre-mixed gas burner used as the heat source inside the Rijke tube with variable location. Two types of Rijke tubes were used for experimental study, one is of steel with 75 mm internal diameter and 750 mm in length for the measurement of wall pressure, temperature and acoustics. •In the first part of the study, acoustic instability zone for different inlet mass flow rates was identified.•In the second part of study, the entire cross-sectional of Rijke tube was divided into 193 subzones and temperatures were measured at 193 locations when instability was present.•In third part, again temperatures were measured at 193 locations with implementation of control method with complete suppression of thermo-acoustic instabilities.

13.
MethodsX ; 10: 102123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007624

RESUMEN

Thermoacoustic instabilities present in the combustor of power producing devices are having adverse effects on the performance. To avoid thermoacoustic instabilities, design of control method is very much essential. Design and development of a closed loop control method is a real challenge for combustor. Active control methods are advantageous than passive methods. The characterization of thermoacoustic instability is essential for effective design of control method. The selection of appropriate controller and it's design depends on characterization of thermoacoustic instabilities. In this method the feedback signal acquired from microphone is used to control the flow rate of radial micro-jets. The developed method is implemented effectively to suppress thermoacoustic instabilities in a one dimensional combustor (Rijke tube). The airflow to the radial micro-jets injector was controlled using a control unit which consist of a stepper motor coupled with a needle valve, and an airflow sensor. Radial micro-jets are used to break a coupling and act as an active closed-loop method. The control method used radial jets effectively to control the thermoacoustic instability and reduces sound pressure level to background level (100 dB to 44 dB) in short span of time (10 Second).•LabVIEW Interface for Arduino (LIFA), LabVIEW, and DAQ are very useful in developed closedloop active control method.•Developed closed loop active control method is very effective for suppression of thermoacoustic instability.•Developed closed loop active control method used air in the form micro jets to control thermoacoustic instabilities.

14.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36991901

RESUMEN

The integration of intelligent robots in industrial production processes has the potential to significantly enhance efficiency and reduce human adversity. However, for such robots to effectively operate within human environments, it is critical that they possess an adequate understanding of their surroundings and are able to navigate through narrow aisles while avoiding both stationary and moving obstacles. In this research study, an omnidirectional automotive mobile robot has been designed for the purpose of performing industrial logistics tasks within heavy traffic and dynamic environments. A control system has been developed, which incorporates both high-level and low-level algorithms, and a graphical interface has been introduced for each control system. A highly efficient micro-controller, namely myRIO, has been utilized as the low-level computer to control the motors with an appropriate level of accuracy and robustness. Additionally, a Raspberry Pi 4, in conjunction with a remote PC, has been utilized for high-level decision making, such as mapping the experimental environment, path planning, and localization, through the utilization of multiple Lidar sensors, IMU, and odometry data generated by wheel encoders. In terms of software programming, LabVIEW has been employed for the low-level computer, and the Robot Operating System (ROS) has been utilized for the design of the higher-level software architecture. The proposed techniques discussed in this paper provide a solution for the development of medium- and large-category omnidirectional mobile robots with autonomous navigation and mapping capabilities.

15.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850541

RESUMEN

The value of a semiconductor's diode temperature determines the correct operation of this element and its useful lifetime. One of the methods for determining the die temperature of a semiconductor diode is through the use of indirect thermographic measurements. The accuracy of the thermographic temperature measurement of the diode case depends on the prevailing conditions. The temperature of the mold body (the black part of the diode case made of epoxy resin) depends on the place of measurement. The temperature of the place above the die is closer to the die temperature than the temperature of mold body fragments above the base plate. In addition, the difficulty of its thermographic temperature measurement increases when the surface whose temperature is being measured is in motion. Then, the temperature measured by thermography may not apply to the warmest point in the case where the die temperature is determined. Information about the difference between temperatures of the different parts of the mold body and the die may be important. For this reason, it was decided to check how much the temperature measurement error of the die diode changes if the temperature of the diode case is not measured at the point that is above the die.

16.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36679504

RESUMEN

Electronic manufacturing and design companies maintain test sites for a range of products. These products are designed according to the end-user requirements. The end user requirement, then, determines which of the proof of design and manufacturing tests are needed. Test sites are designed to carry out two things, i.e., proof of design and manufacturing tests. The team responsible for designing test sites considers several parameters like deployment cost, test time, test coverage, etc. In this study, an automated test site using a supervised machine learning algorithm for testing an ultra-high frequency (UHF) transceiver is presented. The test site is designed in three steps. Firstly, an initial manual test site is designed. Secondly, the manual design is upgraded into a fully automated test site. And finally supervised machine learning is applied to the automated design to further enhance the capability. The manual test site setup is required to streamline the test sequence and validate the control and measurements taken from the test equipment and unit under test (UUT) performance. The manual test results showed a high test time, and some inconsistencies were observed when the test operator was required to change component values to tune the UUT. There was also a sudden increase in the UUT quantities and so, to cater for this, the test site is upgraded to an automated test site while the issue of inconsistencies is resolved through the application of machine learning. The automated test site significantly reduced test time per UUT. To support the test operator in selecting the correct component value the first time, a supervised machine learning algorithm is applied. The results show an overall improvement in terms of reduced test time, increased consistency, and improved quality through automation and machine learning.


Asunto(s)
Comercio , Aprendizaje Automático , Automatización , Aprendizaje Automático Supervisado , Algoritmos
17.
Int J Wirel Inf Netw ; 30(1): 103-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34456541

RESUMEN

Wireless Sensor Networks are often to perform autonomous sensing and controlling the real world objects through the sensor nodes across the globe. Since these sensor nodes are operated by the energy of the battery that has been performed a vital role in deploying a sensor network. Hence, the battery power needs to be minimized to prolong network lifetime for healthcare applications. The monitored data transmission is very important to process in building wireless sensor networks. In order to provide efficient data transmission wireless technology standards are followed as IEEE 802.15.4 standards that provide desirable communication between end to end with optimal routes using the proposed Energy Optimization Algorithm. The proposed algorithm has been improved the data packet transmission efficiency up to 25% and also helps to prolong the life time of Wireless Sensor Networks in order to achieve the efficient data transmission for health care monitoring.

18.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560137

RESUMEN

Product assembly is often one of the last steps in the production process. Product assembly is often carried out by workers (assemblers) rather than robots, as it is generally challenging to adapt automation to any product. When assembling complex products, it can take a long time before the assembler masters all the steps and can assemble the product independently. Training time has no added value; therefore, it should be reduced as much as possible. This paper presents a custom-developed system that enables the guided assembly of complex and diverse products using modern technologies. The system is based on pick-to-light (PTL) modules, used primarily in logistics as an additional aid in the order picking process, and Computer Vision technology. The designed system includes a personal computer (PC), several custom-developed PTL modules and a USB camera. The PC with a touchscreen visualizes the assembly process and allows the assembler to interact with the system. The developed PC application guides the operator through the assembly process by showing all the necessary assembly steps and parts. Two-step verification is used to ensure that the correct part is picked out of the bin, first by checking that the correct pushbutton on the PTL module has been pressed and second by using a camera with a Computer Vision algorithm. The paper is supported by a use case demonstrating that the proposed system reduces the assembly time of the used product. The presented solution is scalable and flexible as it can be easily adapted to show the assembly steps of another product.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Computadores , Microcomputadores
19.
Wirel Pers Commun ; 125(4): 3699-3713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669180

RESUMEN

Electroencephalography (EEG) is a technique of Electrophysiology used in a wide variety of scientific studies and applications. Inadequately, many commercial devices that are available and used worldwide for EEG monitoring are expensive that costs up to thousands of dollars. Over the past few years, because of advancements in technology, different cost-effective EEG recording devices have been made. One such device is a non-invasive single electrode commercial EEG headset called MindWave 002 (MW2), created by NeuroSky Inc that cost less than 100 USD. This work contributes in four distinct ways, first, how mental states such as a focused and relaxed can be identified based on EEG signals recorded by inexpensive MW2 is demonstrated for accurate information extraction. Second, MW2 is considered because apart from cost, the user's comfort level is enhanced due to non-invasive operation, low power consumption, portable small size, and a minimal number of detecting locations of MW2. Third, 2 situations were created to stimulate focus and relaxation states. Prior to analysis, the acquired brain signals were pre-processed to discard artefacts and noise, and band-pass filtering was performed for delta, theta, alpha, beta, and gamma wave extraction. Fourth, analysis of the shapes and nature of extracted waves was performed with power spectral density (PSD), mean amplitude values, and other parameters in LabVIEW. Finally, with comprehensive experiments, the mean values of the focused and relaxed signal EEG signals were found to be 30.23 µV and 15.330 µV respectively. Similarly, average PSD values showed an increase in theta wave value and a decrease in beta wave value related to the focus and relaxed state, respectively. We also analyzed the involuntary and intentional number of blinks recorded by the MW2 device. Our study can be used to check mental health wellness and could provide psychological treatment effects by training the mind to quickly enter a relaxed state and improve the person's ability to focus. In addition, this study can open new avenues for neurofeedback and brain control applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s11277-022-09731-w.

20.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591126

RESUMEN

Adaptive modulation received significant attention for underwater acoustic (UA) communication systems with the aim of increasing the system efficiency. It is challenging to attain a high data rate in UA communication, as UA channels vary fast, along with the environmental factors. For a time-varying UA channel, a self-adaptive system is an attractive option, which can choose the best method according to the channel condition to guarantee the continuous connectivity and high performance constantly. A real-time orthogonal frequency-division multiplexing (OFDM)-based adaptive UA communication system is presented in this paper, employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. In this paper, the received SNR is considered as a performance metric to select the transmission parameters, which are sent back to the transmitter for data transmission. In this research, a UA OFDM communication system is developed, employing adaptive modulation schemes for a nonstationary UA environment which allows to select subcarriers, modulation size, and allocate power adaptively to enhance the reliability of communication, guarantee continuous connectivity, and boost data rate. The recent UA communication experiments carried out in the Canning River, Western Australia, verify the performance of the proposed adaptive UA OFDM system, and the experimental results confirm the superiority of the proposed adaptive scheme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...