Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 661: 124353, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909926

RESUMEN

Labrafac™ MC60 (glycerol monocaprylocaprate) is a lipid-based excipient used in oral formulations as a solubiliser. Due to the high proportions of established permeability enhancers, caprylate (C8) and caprate (C10), in Labrafac™ MC60, we hypothesised that it might behave as an intestinal permeation enhancer. We therefore evaluated this using two paracellular markers (ex vivo) and insulin (in vivo) as model molecules. Ex vivo studies were conducted in isolated muscle-stripped rat colonic mucosae mounted in Ussing chambers. Apical addition of Labrafac™ MC60 (8, 12, and 16 mg/ml) enhanced the apparent permeability coefficients (Papp) of [14C] mannitol and FITC-dextran 4 kDa (FD4) across colonic mucosae. Similar effects were observed in isolated jejunal mucosae, but at higher concentrations (40 mg/ml). The enhancing capacity of Labrafac™ MC60 was transient due to reversibility of reductions in transepithelial electrical resistance (TEER) upon wash-out and effects on fluxes were molecular weight-dependent (MW) as suggested by fluxes of a set of high MW FITC-dextrans. The permeability enhancing effects of Labrafac™ MC60 ex vivo were maintained in the presence of simulated intestinal fluids, FaSSIF and FaSSCoF, in both jejunal and colonic mucosae, respectively. Following intra-intestinal regional instillations to rats, the relative bioavailability of 50 IU/kg insulin ad-mixed with Labrafac™ MC60 was 5 % in jejunum (40 mg/ml) and 6 % in colon (8 mg/ml). When Labrafac™ MC60 was combined with PEG-60 hydrogenated castor oil (1 % v/v), this further increased the bioavailability of insulin to 8 % in jejunum. Absorption enhancement was also maintained in the presence of FaSSIF in jejunal instillations. Histology after 120 min exposure to Labrafac™ MC60 in vivo for both jejunum and colon was similar to untreated control. Labrafac™ MC60 therefore acts as a non-damaging intestinal permeation enhancer for macromolecules and can be considered as another excipient in screening programmes to develop orally administered macromolecules.


Asunto(s)
Dextranos , Excipientes , Fluoresceína-5-Isotiocianato , Glicéridos , Absorción Intestinal , Mucosa Intestinal , Permeabilidad , Animales , Masculino , Absorción Intestinal/efectos de los fármacos , Dextranos/farmacocinética , Dextranos/administración & dosificación , Excipientes/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Glicéridos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/administración & dosificación , Insulina , Ratas , Manitol , Ratas Wistar , Colon/metabolismo , Colon/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/efectos de los fármacos
2.
Int J Pharm X ; 7: 100228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317829

RESUMEN

The study aims to improve the ocular delivery of Nebivolol HCL (NBV) belonging to the Biopharmaceutics classification system (BCSII) by using spanlastic nanovesicles (SNVs) for ophthalmic delivery and incorporating them into hydroxypropyl methylcellulose gel with ketorolac tromethamine (KET) as an anti-inflammatory to improve glaucoma complications like Conjunctivitis. SNVs were prepared by ethanol injection technique using span (60) as a surfactant and labrasol as an edge activator (EA). The impact of formulation factors on SNVs properties was investigated using a Box-Behnken design. In vitro evaluations showed that the formulations (F1, F4, and F14), containing Span 60 and labrasol as EA (25%, 50%, and 25%), exhibited high EE% with low PS and high ZP and DI. Additionally, 61.72 ± 0.77%, 58.97 ± 1.44%, and 56.20 ± 2.32% of the NBV amount were released from F1, F4, and F14 after 5 h, compared to 93.94 ± 1.21% released from drug suspension. The selected formula (G1), containing F1 in combination with KET and 2% w/w HPMC, exhibited 76.36 ± 0.90% drug release after 12 h. Ex vivo Confocal laser scanning revealed a high penetration of NBV-SNVs gel that ascertained the results of the in-vitro study. In vivo studies showed a significant decrease in glaucoma compared to drug suspension, and histopathological studies showed improvement in glaucomatous eye retinal atrophy. G1 is considered a promising approach to improving ocular permeability, absorption, and anti-inflammatory activity, providing a safer alternative to current regimens.

3.
Pharmaceutics ; 16(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258057

RESUMEN

The development of oral insulin drug delivery systems is still an ongoing challenge for pharmaceutical technology researchers, as the formulation process has to overcome a number of obstacles due to the adverse characteristics of peptides. The aim of this study was to formulate different sodium-alginate microparticles as a possible method for oral insulin administration. In our previous studies, the method has been successfully optimized using a small model peptide. The incorporation of insulin into alginate carriers containing nonionic surfactants has not been described yet. In order to enhance the absorption of insulin through biological barriers, Labrasol ALF and Labrafil M 2125 CS were selected as permeation-enhancing excipients. They were applied at a concentration of 0.10% (v/v%), along with various combinations of the two, to increase oral bioavailability. Encapsulation efficiency showed sufficient drug incorporation, as it resulted in over 80% in each composition. In vitro dissolution and enzymatic stability test results proved that, as a pH-responsive polymer, alginate bead swelling and drug release occur at higher pH, thus protecting insulin against the harsh environment of the gastrointestinal tract. The remaining insulin content was 66% due to SIF degradation after 120 min. Permeability experiments revealed the impact of permeation enhancers and natural polymers on drug absorption, as they enhanced drug transport significantly through Caco-2 cells in the case of alginate microparticle formulations, as opposed to the control insulin solution. These results suggest that these formulations are able to improve the oral bioavailability of insulin.

4.
Int J Nanomedicine ; 17: 2535-2553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677677

RESUMEN

Introduction: Cefquinome sulfate (CS) is the first fourth-generation antibiotic for animals, which has a wide antibacterial spectrum, strong antibacterial activity and low drug resistance. However, it is accompanied by problems of poor therapeutic efficacy. In this context, the use of nanosuspensions have been found to be an attractive strategy. The main objective of this work is to develop a new oily nanosuspension to improve bioavailability and stability of CS formulations. Methods: After screening the formulations, cefquinome sulfate oily nanosuspension (CS-NSP) was prepared by mortar grinding, using propylene glycol dicaprolate/dicaprate (Labrafac™ PG) as oil medium and caprylocaproyl polyoxyl-8 glycerides (Labrasol®) as stabilizer. The properties of CS-NSP were investigated by testing its physicochemical characteristics, stability, in vitro release, hemolysis, and muscle irritation. The in vivo pharmacokinetics of CS-NSP was studied using rats. Results: Results show that CS-NSP presents suitable stability, physicochemical properties and safety. Moreover, a rapid release and high bioavailability of CS-NSP have also been verified in the study. Pharmacokinetic experiments in vivo showed that the bioavailability of CS-NSP was about 1.6 times that of commercial cefquinome sulfate injection (CS-INJ, Chuangdao®) (p<0.01). These advantages of CS-NSP were carried out by small particle size and low viscosity, being associated with the use of Labrafac PG and stabilizer Labrasol. Conclusion: The results proved that the new preparation is safe and effective and is expected to become a promising veterinary nanodelivery system.


Asunto(s)
Cefalosporinas , Nanopartículas , Animales , Antibacterianos , Disponibilidad Biológica , Nanopartículas/química , Tamaño de la Partícula , Ratas , Solubilidad , Sulfatos , Suspensiones
5.
ACS Infect Dis ; 7(9): 2637-2649, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34467755

RESUMEN

As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans ß-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged ß-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.


Asunto(s)
Antihelmínticos , Cryptococcus neoformans , Líquidos Iónicos , Preparaciones Farmacéuticas , Antihelmínticos/farmacología , Bencimidazoles/farmacología , Ácido Dioctil Sulfosuccínico , Simulación del Acoplamiento Molecular , Solubilidad
6.
Drug Deliv Transl Res ; 11(1): 103-117, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31900797

RESUMEN

Amisulpride (AMS) is atypical antipsychotic with a weak basic nature (pKa 9.37), which results in low solubility in the high pH of the intestine. It is also recognized as a substrate of P-glycoprotein efflux pump. Both factors lead to its low oral bioavailability (48%). The daily dose of AMS is between 200 and 1200 mg to be taken in divided doses which compromise patient compliance. Therefore, controlled release formulation of AMS is of clinical significance. AMS was formulated into matrix tablets containing Labrasol, P-glycoprotein efflux inhibitor, and a penetration enhancer, using direct compression technique. The tablets were prepared according to 21·41 factorial design using two polymers, namely, HPMC and Carbopol 934 at four concentrations (20%, 30%, 40%, 50%). Percentage AMS released after 2 h (Q2hr%) and 8 h (Q8hr%) were chosen as dependent variables. Two acidic pH modifiers (fumaric acid and tartaric acid) at two levels (15% and 30%) were incorporated in the tablet according to 22 factorial design. All formulae with acidic pH modifier had similarity factor (f2) ≥ 50 proving the pH independent release of AMS. The pharmacokinetic study in rabbits revealed 30% enhancement of the oral absorption AMS imparted by the pH-modified matrix tablet containing Labrasol. Graphical abstract.


Asunto(s)
Amisulprida , Animales , Preparaciones de Acción Retardada , Glicéridos , Concentración de Iones de Hidrógeno , Conejos , Solubilidad , Comprimidos
7.
Pharm Dev Technol ; 26(3): 253-261, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33307920

RESUMEN

Due to their light consistency and good spreadability, aqueous foams are considered as convenient and highly accepted drug carrier systems that are of great importance in the field of topical drug delivery. The production of a stable, easy to dose, preferably environmentally harmless foam formulation is challenging. Therefore, foam characterisation requires a complex approach: several tests are to be performed throughout the formulation. Our study primarily aims to investigate the quality attributes of propellant-free foam-forming additives. Throughout the research, we focused on acquiring knowledge about the properties of pharmaceutical excipients suitable for foam formulations and their effect on foam characteristics. Not only were the relative foam density, actuated foam weight and the foam collapse tendencies studied, but also the initial liquid properties. Along with surface tension determination, bubble-forming experiments were carried out. The bubble size and rate of formation, standardised by using a texture analyser, were followed by image analysis. Analysing the bubble-forming properties of dilute surfactant solutions allows assumptions on the properties of foam formed from the more concentrated solutions. The size and number of bubbles in the produced foams are related to the kinetics of single bubble formation. For comparison, commercially available medicated foams were studied.


Asunto(s)
Portadores de Fármacos/química , Excipientes/química , Preparaciones Farmacéuticas/administración & dosificación , Tensión Superficial , Tensoactivos/química , Agua/química
8.
Materials (Basel) ; 13(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365956

RESUMEN

The development of efficacious means of delivering antioxidant polyphenols from natural sources for the treatment of skin diseases is of great interest for many cosmetic and pharmaceutical companies. Resveratrol (RSV) and Limonene (LIM) have been shown to possess good anti-inflammatory and antibacterial properties against Staphylococcus aureus infections responsible for many skin disorders, such as acne vulgaris. In this study, solid lipid microparticles are designed as composite vehicles capable of encapsulating a high amount of trans-RSV and enhancing its absorption through the stratum corneum. A microparticulate system based on mixture of PEGylate lipids, long-chain alcohols and LIM is able to entrap RSV in an amorphous state, increasing its half-life and avoiding inactivation due to isomerization phenomena, which represents the main drawback in topical formulations. Particles have been characterized in term of shape, size distribution and drug loading. Antimicrobial tests against S. aureus have highlighted that empty microspheres possess per se antimicrobial activity, which is enhanced by the presence of LIM, demonstrating that they can represent an interesting bactericide vehicle for RSV administration on the skin.

9.
J Control Release ; 310: 115-126, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31401199

RESUMEN

Labrasol® ALF (Labrasol®), is a non-ionic surfactant excipient primarily used as a solubilising agent. It was investigated here as an intestinal permeation enhancer in isolated rat colonic mucosae in Ussing chamber and in rat in situ intestinal instillations. Labrasol® comprises mono-, di- and triglycerides and mono- and di- fatty acid esters of polyethylene glycol (PEG)-8 and free PEG-8, with caprylic (C8)- and capric acid (C10) as the main fatty acids. Source components of Labrasol® as well as Labrasol® modified with either C8 or C10 as the sole fatty acid components were also tested to determine which element of Labrasol® was responsible for its permeability-enhancing properties. Labrasol® (4, 8 mg/mL) enhanced the transport of the paracellular markers, [14C] mannitol, FITC-dextran 4000, and FITC-insulin across colonic mucosae. The enhancement was non-damaging, transient, and molecular weight-dependent. The PEG ester fraction of Labrasol® also had enhancing properties. When insulin was administered with Labrasol® in instillations, it had a relative bioavailability of 7% in jejunum and 12% in colon. C8- and C10 versions of Labrasol® and the PEG ester fraction also induced similar bioavailability values in jejunal instillations: 6, 5 and 7% respectively. Inhibition of lipases in instillations did not reduce the efficacy of Labrasol®, suggesting that its mechanism as a PE is not simply due to liberated medium chain fatty acids. Labrasol® acts as an efficacious intestinal permeation enhancer and has potential for use in oral formulations of macromolecules and BCS Class III molecules.


Asunto(s)
Colon/efectos de los fármacos , Excipientes/farmacología , Glicéridos/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Yeyuno/efectos de los fármacos , Animales , Colon/metabolismo , Excipientes/farmacocinética , Glicéridos/farmacocinética , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Masculino , Ratas , Ratas Wistar , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
10.
Biomed Pharmacother ; 114: 108770, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30913494

RESUMEN

Low dose Methotrexate (MTX) therapy is considered a gold standard for Rheumatoid Arthritis (RA). Transdermal drug delivery is hypothesized as an alternative to conventional therapies to alleviate its adverse effects. In our study, MTX was entrapped in deformable liposomes and loaded in a hydroxyethyl cellulose gel. This system was evaluated by the Box Behnken statistical design for optimization. The effect of formulation variables on particle size, entrapment and ex vivo skin permeation was studied. The MTX nanogel was evaluated for its dermal toxicity (acute and repeat dose safety), in vivo biodistribution (using 125I radio-labelled MTX) and therapeutic efficacy (collagen induced arthritis [CIA] model). The optimized formulation demonstrated appreciable nanosize (110 ± 20 nm), drug entrapment (42 ± 1.9%) and high ex vivo transdermal flux (17.37 ± 1.5 µg/cm2/hr). In the dermal toxicity studies, nanogel formulation did not show any signs of irritation or toxicity, whereas in the biodistribution study, the MTX nanogel formulation depicted sustained systemic delivery up to 48 h with low accumulation in its organs of toxicity such as the liver, kidneys and gut. In the CIA model, the MTX nanogel significantly ameliorated hind paw swelling, reduced arthritic score, joint damage (histological, radiological examination) and attenuated the rise in serum cytokines such as TNF-ɑ and IL-6. In conclusion, the optimized MTX nanogel formulation displayed skin biocompatibility, sustained systemic delivery, safety as well as therapeutic efficacy.


Asunto(s)
Portadores de Fármacos/química , Metotrexato/administración & dosificación , Metotrexato/metabolismo , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Administración Cutánea , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Química Farmacéutica/métodos , Femenino , Liposomas/química , Masculino , Tamaño de la Partícula , Polietilenglicoles/química , Polietileneimina/farmacología , Psoriasis/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular/fisiología
11.
Asian J Pharm Sci ; 14(3): 329-339, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32104463

RESUMEN

Labrasol, as a non-ionic surfactant, can enhance the permeation and absorption of drugs, and is extensively used in topical, transdermal, and oral pharmaceutical preparations as an emulsifier and absorption enhancer. Recent studies in our laboratory have indicated that labrasol has a strong absorption enhancing effect on different types of drugs in vitro and in vivo. This study was performed to further elucidate the action mechanism of labrasol on the corneal penetration. In this research, the fluorescein sodium, a marker of passive paracellular transport of tight junction, was selected as the model drug to assess the effect of labrasol on in vitro corneal permeability. To investigate the continuous and real-time influence of labrasol on the membrane permeability and integrity, the Ussing chamber system was applied to monitor the electrophysiological parameters. And, furthermore, we elucidated the effect of labrasol on excised cornea at the molecular level by application of RT-PCR, Western blot, and immunohistochemical staining. The results indicated that labrasol obviously enhance the transcorneal permeability of fluorescein sodium, and the enhancement was realized by interacting with and down-regulating the associated proteins, such as F-actin, claudin-1 and ß-catenin, which were contributed to cell-cell connections, respectively.

12.
AAPS PharmSciTech ; 19(7): 2961-2970, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30030724

RESUMEN

The purpose of the current study was to develop a novel liposomal formulation to improve the oral bioavailability of carvedilol, a Biopharmaceutics Classification System class II with poor aqueous solubility and extensive presystemic metabolism. Conventional and various surfactant-enriched carvedilol-loaded liposomes were prepared by thin film hydration technique and physicochemical properties of liposomes (including size, encapsulation efficiency, release behavior, and morphology) were evaluated. To assess the oral bioavailability, in vivo studies were carried out in eight groups of male Wistar rats (n = 6) and the drug plasma concentration was determined. Conventional and surfactant containing liposomes showed average particle size of 76-104 nm with a narrow size distribution, high encapsulation efficiency (80%≤) and a sustained release profile in simulated intestinal fluid. Compared to the suspension, conventional and Labrasol containing liposomes significantly improved the oral bioavailability and peak plasma concentration of carvedilol. Biocompatibility studies (cell cytotoxicity and histopathological analyses) showed that the enhancing effect might be achieved without any apparent toxicity in the intestine. Decreased oral absorption of carvedilol nanovesicles by using a chylomicron flow blocker indicated contribution of lymphatic transport in nanocapsules absorption. The results reported the successful development of biocompatible Labrasol-enriched carvedilol nanoliposomal formulation with a significant oral enhancement capability. Graphical Abstract ᅟ.


Asunto(s)
Carvedilol/química , Portadores de Fármacos/química , Glicéridos/química , Nanopartículas/química , Agua/química , Administración Oral , Antagonistas Adrenérgicos beta/administración & dosificación , Antagonistas Adrenérgicos beta/química , Animales , Disponibilidad Biológica , Células CACO-2 , Carvedilol/administración & dosificación , Portadores de Fármacos/administración & dosificación , Emulsiones/administración & dosificación , Emulsiones/química , Glicéridos/administración & dosificación , Humanos , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Liposomas , Masculino , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Wistar , Solubilidad , Suspensiones
13.
Int J Pharm ; 539(1-2): 83-94, 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29374518

RESUMEN

Baicalin is a multi-purpose flavonoid used in the treatment of different ocular diseases. Owing to its poor stability in basic pH and its poor solubility, a suitable carrier system is needed to enhance its ocular therapeutic potential. Therefore, the objective of this work was to prepare and contrast different baicalin vesicular systems; namely liposomes, penetration enhancer vesicles PEVs and transfersomes. Results revealed that baicalin vesicles exhibited suitable particle size and zeta potential, high entrapment efficiency and controlled release. Depending on the vesicular composition, selected formulations were able to resist physical changes of particle size, zeta potential, entrapment efficiency and in vitro release after storage for 3 months, while retarding the degradation of baicalin. Selected vesicular formulations displayed equivalent or superior antioxidant potential compared to baicalin solution, with absolute superiority over ascorbic acid reference, while demonstrating sterilization endurance and safety on ocular tissues. Pharmacokinetic studies revealed that transfersomes displayed the fastest onset of action, while liposomes displayed the highest extent of absorption as concluded from the Tmax, Cmax, and AUC0-∞ values with 4-5 folds increase in bioavailability compared to baicalin control solution. This delineates baicalin vesicular systems as a promising platform for treatment of ocular diseases such as inflammation, cataract and diabetic retinopathy.


Asunto(s)
Portadores de Fármacos/química , Estabilidad de Medicamentos , Ojo/metabolismo , Flavonoides/farmacocinética , Liposomas/química , Animales , Ácido Ascórbico/farmacología , Disponibilidad Biológica , Liberación de Fármacos , Ojo/efectos de los fármacos , Flavonoides/farmacología , Liposomas/ultraestructura , Tamaño de la Partícula , Conejos
14.
Curr Top Med Chem ; 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28730958

RESUMEN

Leishmaniasis is a neglected tropical disease responsible for the ninth largest disease burden in the world threatening 350 million people mostly in developing countries. The lack of efficacy, severe adverse effects, long duration, high cost and parenteral administration of the current therapies result in poor patient compliance and emergence of resistance. Leishmaniasis' unmet need for safer, affordable and more effective treatments is only partly addressed by today's global health product pipeline that focuses on products amenable to rapid clinical development, mainly by reformulating or repurposing existing drugs for new uses. Excipients are necessary for ensuring the stability and bioavailability of currently available antileishmaniasis drugs which in their majority are poorly soluble or have severe side-effects. Thus, selection of excipients that can ensure bioavailability and safety as well as elicit a synergistic effect against the Leishmania parasites without compromising safety will result in a more efficacious, safe and fast to market medicine. We have evaluated the in vitro activity of 30 commercially available generally regarded as safe (GRAS) excipients against different Leishmania spp., their cytotoxicity and potential use for inclusion in novel formulations. Amongst the tested excipients, the compounds with higher selectivity index were Eudragit E100 (cationic triblock copolymer of dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate), CTAB (cetyltrimethylammonium bromide, cationic), lauric acid, Labrasol(non-ionic, caprylocaproyl polyoxyl- 8 glycerides) and sodium deoxycholate. An ideal excipient need to possess amphiphilic nature with ionic/polar groups and possess a short or medium fatty acid chain such as lauric (C12), capric C10) or caprylicacid (C8). Inclusion of these excipients and identification of the optimal combination of drug and excipients would lead to a more effective and safer antileishmanial therapies.

15.
Drug Dev Ind Pharm ; 43(7): 1112-1125, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28276784

RESUMEN

OBJECTIVE: The aim of this study is to evaluate the use of PEG/glycerides of different HLB; oleoyl macrogol-6-glycerides (Labrafil® M 1944 CS) and caprylocaproylmacrogol-8-glycerides (Labrasol®), compared to Labrafac lipophile® as PEG-free glyceride in the preparation of nanostructured lipid carriers (NLCs). PEG/glycerides are suggested to perform a dual function; as the oily component, and as the PEG-containing substrate required for producing the PEGylated carriers without physical or chemical synthesis. METHODS: Lipid nanocarriers were loaded with simvastatin (SV) as a promising anticancer drug. An optimization study of NLC fabrication variables was first conducted. The effect of lyophilization was investigated using cryoprotectants of various types and concentrations. The prepared NLCs were characterized in terms of particle size (PS), size distribution (PDI), zeta potential (ZP), drug entrapment, in vitro drug release, morphology and drug-excipient interactions. The influence of glycerides ± PEG on the cytotoxicity of SV was evaluated on MCF-7 breast cancer cells, in addition to the cellular uptake of fluorescent blank NLCs. RESULTS: The alteration between different oil types had a significant impact on PS, ZP and drug release. Both sucrose and trehalose showed the lowest increase in PS and PDI of the reconstituted lyophilized NLCs. The in vitro cytotoxicity and cellular uptake studies indicated that SV showed the highest antitumor effect on MCF-7 cancer cells when loaded into Labrasol® NLCs demonstrating a high cellular uptake as well. CONCLUSION: The study confirms the applicability of PEG/glycerides in the development of NLCs. Encapsulating SV in Labrasol®-containing NLC could enhance the antitumor effect of the drug.


Asunto(s)
Anticolesterolemiantes/administración & dosificación , Portadores de Fármacos/administración & dosificación , Glicéridos/química , Lípidos/química , Nanoestructuras/química , Polietilenglicoles/administración & dosificación , Simvastatina/administración & dosificación , Anticolesterolemiantes/química , Línea Celular Tumoral , Química Farmacéutica , Portadores de Fármacos/química , Glicéridos/administración & dosificación , Humanos , Lípidos/sangre , Células MCF-7 , Nanoestructuras/administración & dosificación , Polietilenglicoles/química , Simvastatina/química
16.
Drug Deliv ; 24(1): 328-338, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28165818

RESUMEN

BCS class II drugs usually suffer inadequate bioavailability as dissolution step is the absorption rate limiting step. In this work, the effect of solubility increase at the main absorption site for these drugs was investigated using risperidone as a drug model. Liquisolid technique was applied to prepare risperidone per-oral tablets of high dissolution rate at intestinal pH (6.8) using versatile nonionic surfactants of high solubilizing ability [Transcutol HP, Labrasol and Labrasol/Labrafil (1:1) mixture] as liquid vehicles at different drug concentrations (10-30%) and fixed (R). The prepared liquisolid tablets were fully evaluated and the dissolution rate at pH 6.8 was investigated. The formulae that showed significantly different release rate were selected and subjected to mathematical modeling using DE25, MDT and similarity factor (f2). Depending on mathematical modeling results, formula of higher dissolution rate was subjected to solid state characterization using differential scanning calorimetric (DSC), infrared spectroscopy (IR) and X-ray diffraction (XRD). Finally, the drug bioavailability was studied in comparison to conventional tablets in rabbits. Results showed that liquisolid tablet prepared using Labrasol/Labrafil (1:1) mixture as liquid vehicle containing 10% risperidone is a compatible formula with law drug crystallinity and higher dissolution rate (100% in 25 min). The drug bioavailability was significantly increased in comparison to the conventional tablets (1441.711 µg h/mL and 137.518 µg/mL in comparison to 321.011 µg h/mL and 38.673 µg/mL for AUC and Cpmax, respectively). This led to the conclusion that liquisolid technique was efficiently improved drug solubility and solubility increase of BCS class II drugs at their main absorption site significantly increases their bioavailability.


Asunto(s)
Química Farmacéutica/métodos , Portadores de Fármacos/metabolismo , Absorción Intestinal/fisiología , Modelos Teóricos , Risperidona/metabolismo , Animales , Disponibilidad Biológica , Carbamazepina/síntesis química , Carbamazepina/metabolismo , Carbamazepina/farmacología , Estudios Cruzados , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacología , Absorción Intestinal/efectos de los fármacos , Masculino , Conejos , Distribución Aleatoria , Risperidona/síntesis química , Risperidona/farmacología , Solubilidad , Difracción de Rayos X
17.
Drug Discov Ther ; 11(6): 293-299, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29332886

RESUMEN

The development of peptide therapeutics owing to the advances in biotechnology has overcome some unmet medical needs; however, the route of administration is still limited to injections. Systemic delivery of insulin via an enteral route remains a great challenge due to its instability and low mucosal permeability. In this study, we investigated the effect of drug condensation in a suppository on the efficacy of insulin after rectal administration. Suppositories with dimples are prepared by a mold method using a hard fat (Suppocire® AM). Insulin or fluorescein isothiocyanate-dextran (molecular weight: 3,000-5,000) (FD4) as a model of a hydrophilic macromolecule was loaded in the dimples, and sealed with other lipids with different melting points. The in vitro release test showed that the time to 50% drug release depends on the melting point of the lipid for sealing but not on the number of dimples. The suppositories with one-, or three-dimple containing insulin and caprylocaproyl macrogol-8 glyceride (Labrasol®) were administered to rats at 0.5 U/head. The reduction in plasma glucose level was more significant for the one-dimple-type suppository than for the three-dimple-type although the one-dimple-type suppository contained less amount of Labrasol by one-third compared to the three-dimple-type. These results suggest that condensation of an insulin dose in a limited surface area of a suppository improves systemic availability via the rectal route with a reduced amount of an absorption enhancer.


Asunto(s)
Glucemia/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Vehículos Farmacéuticos , Supositorios , Administración Rectal , Animales , Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Glicéridos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Técnicas In Vitro , Insulina/farmacocinética , Insulina/farmacología , Absorción Intestinal , Ratas , Temperatura de Transición
18.
Int J Pharm ; 515(1-2): 684-691, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27825863

RESUMEN

The combined strategy of drug-cyclodextrin (CD) complexation and complex loading into nanocarriers (deformable liposomes or nanostructured lipid carriers (NLC)), was exploited to develop effective topical formulations for oxaprozin transdermal administration. Oxaprozin was loaded as ternary complex with randomly-methylated-ßCD and arginine, selected as the best system in improving drug solubility. The colloidal dispersions, characterized for particle size, zeta-potential and entrapment efficiency, were investigated for drug permeation properties in comparison with a plain drug aqueous suspension, a ternary complex aqueous solution and a plain drug liposomal or NLC dispersion. Experiments with artificial membranes showed that the joined use of CD and both liposomes or NLC enabled a marked increase of the drug permeability (16 and 8 times, respectively) and was significantly more effective (P<0.05) than the drug as ternary complex (3.2 times increase), and the corresponding liposomal or NLC dispersion of plain drug (5.6 and 4.3 times increase, respectively). Experiments with excised human skin confirmed the significantly (P<0.05) better performance of deformable liposomes than NLC in promoting drug permeation; moreover, they evidenced a more marked permeability increase compared to the plain drug (24 and 12 fold, respectively), attributed to a possible enhancer effect of the nanocarriers components and/or of the randomly-methylated-ßCD.


Asunto(s)
Ciclodextrinas/química , Portadores de Fármacos/química , Lípidos/química , Liposomas/química , Nanopartículas/química , Propionatos/química , Administración Cutánea , Química Farmacéutica/métodos , Ciclodextrinas/administración & dosificación , Humanos , Nanoestructuras , Oxaprozina , Tamaño de la Partícula , Permeabilidad/efectos de los fármacos , Propionatos/administración & dosificación , Piel/metabolismo , Absorción Cutánea/efectos de los fármacos , Solubilidad , beta-Ciclodextrinas/administración & dosificación , beta-Ciclodextrinas/química
19.
Int J Pharm ; 515(1-2): 293-299, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27720954

RESUMEN

In this present study, the secretory transport of P-gp substrates, rhodamine 123 and digoxin, was evaluated using a Caco-2/HT29-MTX co-culture characterized by an efflux mechanism and a paracellular permeability closer to the human intestinal barrier compared to the Caco-2 monolayer gold standard. The influence of simulated intestinal fluids termed FeSSIF and FaSSIF on the intestinal absorption was also assessed in comparison with a conventional saline buffer. Labrasol® ALF and Gelucire® 44/14 in saline buffer significantly decreased to 83% and 62%, the P-gp-mediated transport of rhodamine 123 across the co-culture, respectively. The effects of Gelucire® 44/14 were much more exacerbated with the Caco-2 monolayer model with a reduced permeability to 34% but they were partially reversed in the co-culture with FeSSIF. The modulation by the lipid excipients of digoxin secretory transport across the Caco-2 monolayer and the co-culture was reduced compared with the rhodamine 123. This work also emphasizes the numerous parameters that have to be considered for predicting accurately the effects of potential P-gp inhibitors including the in-vitro model, the incubation media and the intrinsic properties of P-gp substrates.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico/efectos de los fármacos , Glicéridos/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Polietilenglicoles/farmacología , Células CACO-2 , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Digoxina/metabolismo , Excipientes/química , Células HT29 , Humanos , Lípidos/química , Permeabilidad/efectos de los fármacos , Rodamina 123/metabolismo
20.
Int J Pharm ; 515(1-2): 490-500, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27789367

RESUMEN

Edaravone (EDR), a strong free radical scavenger, is known for its promising therapeutic potential in oxidative stress (OS) associated diseases, however poor oral bioavailability is the major obstacle in its potential use. Oral liquid dosage form is the most preferred delivery method in paediatric, geriatric and specialised therapies. The present research discusses the development of a Novel Oral Delivery System (NODS) of EDR to enhance oral bioavailability. From preformulation study, solubility, and stability were identified as key challenges and the requirement of an acidic environment and protection against oxidation were found to be critical. The NODS made up of a mixture of Labrasol (LBS) and an acidic aqueous system, was optimized on the basis of solubility and stability study. It can be stored ≤40°C for at least one month. Drug release from NODS was slow, sustained and significantly better as compared to suspension. The significant reduction in metabolism and improvement in permeability across the small intestine were observed with NODS compared to free EDR. The oral pharmacokinetic study showed 571% relative bioavailability with NODS compared to EDR suspension. From the results obtained, NODS is a promising candidate for use in OS associated diseases.


Asunto(s)
Antipirina/análogos & derivados , Administración Oral , Animales , Antipirina/administración & dosificación , Antipirina/química , Antipirina/metabolismo , Disponibilidad Biológica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Edaravona , Glicéridos/química , Humanos , Masculino , Permeabilidad , Ratas , Ratas Sprague-Dawley , Solubilidad , Suspensiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...