Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
APMIS ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295304

RESUMEN

The purpose of this study was to establish a porcine model of urinary tract infection (UTI) with gram-positive uropathogens. Ten female domestic pigs were experimentally inoculated with human UTI isolates of Enterococcus faecalis (n = 3), Staphylococcus saprophyticus (n = 3), or Staphylococcus aureus (n = 4) and followed with regular urine samples. Bladders and kidneys were aseptically removed at termination (5-7 days post infection) and assessed by gross pathology and bacterial enumeration. Enterococcus faecalis (n = 3 of 3) and S. aureus (n = 2 of 4) successfully colonized the pig bladders. Inoculation with S. saprophyticus never resulted in detectable bacteriuria. All infected pigs had cleared the infection spontaneously before termination. Surprisingly, three (of four) pigs inoculated with S. aureus led to spontaneous infection with opportunistic pathogens. Also, one pig colonized with E. faecalis resulted in spontaneous infection with E. coli. In conlusion, the pig supports experimental UTI with E. faecalis for up to 24 h but not prolonged infection. S. aureus and S. saprophyticus fails to cause UTI in pigs and other animals should be considered for studying these pathogens.

2.
J Infect ; 89(5): 106271, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278276

RESUMEN

OBJECTIVES: We aimed to evaluate the effectiveness of alternating magnetic fields (AMF) combined with antibiotics in reducing Staphylococcus aureus biofilm on metal implants in a large animal model, compared to antibiotics alone. METHODS: Metal plates were inoculated with a clinical MRSA strain and then implanted into thirty-three ewes divided into three groups: positive control, linezolid only, and a combination of linezolid and AMF. Animals had either titanium or cobalt-chrome plates and were sacrificed at 5 or 21 days post-implantation. Blood and tissue samples were collected at various time points post-AMF treatment. RESULTS: In vivo efficacy studies demonstrated significant biofilm reduction on titanium and cobalt-chrome implants with AMF-linezolid combination treatment compared to controls. Significant bacterial reductions were also observed in surrounding tissues and bones. Cytokine analysis showed improved inflammatory responses with combination therapy, and histopathology confirmed reduced inflammation, necrosis, and bacterial presence, especially at 5 days post-implantation. CONCLUSIONS: This study demonstrates that combining AMF with antibiotics significantly reduces biofilm-associated infections on metal implants in a large animal model. Numerical simulations confirmed targeted heating, and in vivo results showed substantial bacterial load reduction and reduced inflammatory response. These findings support the potential of AMF as a non-invasive treatment for prosthetic joint infections.

3.
Ann Otol Rhinol Laryngol ; : 34894241282582, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329196

RESUMEN

OBJECTIVE: Airway replacement is a challenging surgical intervention and remains an unmet clinical need. Due to the risk of airway stenosis, anastomotic separation, poor vascularization, and necrosis, it is necessary to establish the gold-standard outcomes of tracheal replacement. In this study, we use a large animal autograft model to assess long-term outcomes following tracheal replacement. METHODS: Four New Zealand White rabbits underwent tracheal autograft surgery and were observed for 6 months. Clinical and radiographic surveillance were recorded, and grafts were analyzed histologically and radiographically at endpoint. RESULTS: All animals survived to the endpoint with minimal respiratory symptoms and normal growth rates. No complications were observed. Computed tomography scans of the post-surgical airway demonstrated graft patency at all time points. Histological sections showed no sign of stenosis or necrosis with preservation of the native structure of the trachea. CONCLUSION: We established benchmarks for airway replacement. Our findings suggest that a rabbit model of tracheal autograft with direct reimplantation is feasible and does not result in graft stenosis or airway collapse.

4.
Front Immunol ; 15: 1436926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315100

RESUMEN

Background: Ischemia/reperfusion injury (IRI) is a complex pathological process, triggered by the restoration of blood flow following an interrupted blood supply. While restoring the blood flow is the only option to salvage the ischemic tissue, reperfusion after a prolonged period of ischemia initiates IRI, triggering a cascade of inflammatory responses ultimately leading to neutrophil recruitment to the inflamed tissue, where they release neutrophil extracellular traps (NETs). NETs are web-like structures of decondensed chromatin and neutrophilic proteins, including peptidyl-arginine deiminase 2 and 4 (PAD2, PAD4), that, once outside, can citrullinate plasma proteins, irreversibly changing their conformation and potentially their function. While the involvement of NETs in IRI is known mainly from rodent models, we aimed to determine the effect of NET formation and especially PADs-mediated extracellular protein citrullination in a porcine model of limb IRI. Methods: We conducted our study on amputated pig forelimbs exposed to 1 h or 9 h of ischemia and then reperfused in vivo for 12 h. Limb weight, edema formation, compartmental pressure were measured, and skeletal muscle was analyzed by immunofluorescence (TUNEL assay and dystrophin staining) to evaluate tissue damage. Fibrin tissue deposition, complement deposition and NETs were investigated by immunofluorescence. Citrullinated plasma proteins were immunoprecipitated and citrullinated fibrinogen was identified in the plasma by Western blot and in the tissue by immunofluorescence and Western blot. Results: Our data consolidate the involvement of NETs in a porcine model of limb IRI, correlating their contribution to damage extension with the duration of the ischemic time. We found a massive infiltration of NETs in the group subjected to 9 h ischemia compared to the 1 h and citrullinated fibrinogen levels, in plasma and tissue, were higher in 9 h ischemia group. We propose fibrinogen citrullination as one of the mechanisms contributing to the worsening of IRI. NETs and protein citrullination represent a potential therapeutic target, but approaches are still a matter of debate. Here we introduce the idea of therapeutic approaches against citrullination to specifically inhibit PADs extracellularly, avoiding the downstream effects of hypercitrullination and keeping PADs' and NETs' intracellular regulatory functions.


Asunto(s)
Citrulinación , Modelos Animales de Enfermedad , Trampas Extracelulares , Fibrinógeno , Daño por Reperfusión , Animales , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Fibrinógeno/metabolismo , Porcinos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/inmunología , Músculo Esquelético/irrigación sanguínea , Miembro Posterior/irrigación sanguínea , Arginina Deiminasa Proteína-Tipo 4/metabolismo
5.
Mol Ther Methods Clin Dev ; 32(3): 101314, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39253356

RESUMEN

In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.

6.
Curr Res Transl Med ; 72(4): 103463, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39278153

RESUMEN

BACKGROUND: The setting of normovolemic anemia is required for a variety of research applications, such as testing of novel medication for anemia treatment. Unfortunately, large animal models using full blood draw and replenishment with balanced electrolyte solution (BES) lead to bleeding complications, as coagulation factors and platelets are also drawn. We therefore aimed to establish a model of selective red blood cell (RBC) depletion to the main endpoint of hemoglobin (Hgb) levels of 4-6 g dL-1 using apheresis in sheep. METHODS: In vitro experiments were performed first to establish the apheresis protocol. In vivo, anesthetized ewes underwent a sham protocol without apheresis (n = 5) or apheresis (n = 4). Both groups were observed for the following six hours at a defined starting point (BE0) to compare Hgb, hematocrit (Hct), coagulation and clinical parameters. For statistical analysis, unpaired t-test with Welch`s correction was used. RESULTS: Hgb levels were effectively decreased by 51 % to mean Hgb of 4.4 g dL-1 in the apheresis group compared to 9.1 g dL-1 in sham (*p < 0.0001). Hct (11.2% vs 25.1 %, *p = 0.01) and RBCs (3.7 vs 8.2 × 106/µl, *p = 0.003) also decreased. The relative number of platelets compared to baseline was different (55.6 ± 10.6% vs. 100 ± 0 %, *p = 0.004), but no hemorrhage was observed. White blood cells (WBCs), lactate, prothrombin ratio and activated partial thromboplastin time (aPTT) remained within similar ranges. CONCLUSIONS: Critical normovolemic anemia without bleeding complications was successfully reached by selective RBC depletion in sheep. Investigations of physiological adaptations to severe anemia and pharmaceutical testing can be performed in large animals with depleted RBCs.

7.
Brain Res ; 1846: 149233, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260788

RESUMEN

Recent reports have described stimulation evoked resonant neural activity (ERNA) recorded in the subthalamic nucleus (STN) and globus pallidus internus (GPi) of patients during Deep Brain Stimulation (DBS) surgery. The constraints imposed during intraoperative recordings in patients limit the opportunity for in-depth study of new findings such as ERNA. In this pilot study, we leverage a large animal model to focus on detailed characterization of ERNA. Bilateral DBS leads were implanted in the STN in three ovine subjects and externalized for chronic use with custom stimulation and recording circuitry. ERNA was reliably recorded from the STN region in all three subjects with distinct specificity to recording and stimulation sites/contacts. Basic neural response characteristics such as input/output behavior, frequency response and strength/duration curves were evaluated. ERNA amplitude was highly dependent upon stimulation frequency, due to the interaction of the underlying resonant activity and the evoked response from each stimulus pulse. The results could be predicted by a mathematical model of constructive/destructive phase interference, and importantly, the evoked response latency. Significant time dependent dynamics in these evoked potentials were observed, which will be critically important to understand for future clinical applications. Based upon these recordings from leads in the STN region of healthy ovine subjects, these data confirm that DBS evokes high frequency resonant activity in the basal ganglia network. The clinical utility of ERNA remains to be demonstrated, but its direct association with DBS therapy makes it an interesting biomarker for potential use in contact selection and closed loop therapy.

8.
Mol Ther ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39192584

RESUMEN

Neurological disorders pose a challenge for targeted therapy due to restricted access of therapeutic agents to the central nervous system (CNS). Current methods are limited by procedure-related risks, invasiveness, and insufficient CNS biodistribution. A novel percutaneous transvenous technology, currently in clinical trials for communicating hydrocephalus, offers a minimally invasive approach by providing endovascular access to the cerebrospinal fluid-filled cerebellopontine angle (CPA) cistern. We hypothesized that drug delivery to the CPA cistern could yield widespread CNS distribution. Using an ovine model, we compared the biodistribution of scAAV9-CB-GFP following CPA cistern infusion with previously reported cisterna magna (CM) administration. Targeting both the CPA cistern and CM in sheep, we employed a lumbar spine-inserted microcatheter under fluoroscopy. CPA delivery of AAV9 demonstrated biodistribution and transduction in the cerebral cortices, striatum, thalamus, midbrain, cerebellum, and spinal cord, with minor liver distribution comparable to CM. The favorable safety profile in humans with hydrocephalus suggests that percutaneous endovascular injection into the CPA could offer a clinically safer and minimally invasive delivery system for CNS gene and cell-based therapies.

9.
Intensive Care Med Exp ; 12(1): 75, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207603

RESUMEN

BACKGROUND: Sepsis can lead to coagulopathy and microvascular thrombosis. Prior studies, including ours, reported an increased level of extracellular vimentin in blood derived from septic patients. Moreover, we identified the contribution of extracellular vimentin to fibrin formation and to the fibrin clot structure ex vivo in plasma from septic patients. Here, we tested the status of plasma vimentin and its impact on fibrin clots using our recently described swine model of methicillin-resistant Staphylococcus aureus (MRSA) sepsis-induced coagulopathy. RESULTS: We employed ELISA, size-exclusion chromatography, vimentin antibodies, confocal microscopy, and turbidity assays on piglet plasma obtained at pre- and post-MRSA inoculation. Plasma vimentin level at 70 h post-MRSA inoculation was on average twofold higher compared to pre-infection (0 h) level in the same animal. Anti-vimentin antibody effectively reduced fibrin formation ex vivo and increased porosity in the fibrin clot structure generated from septic piglet plasma. In contrast to plasma at 0 h, the size-exclusion chromatography revealed that phosphorylated vimentin was in-complex with fibrinogen in septic piglet plasma. CONCLUSIONS: Thus, our swine model of sepsis-induced coagulopathy, reproduced increased extracellular circulating vimentin and subsequent potentiation of fibrin formation, often observed in septic patient. These outcomes validate the use of large animal models to investigate the dysregulated host immune response to infection leading to coagulopathy, and to develop new therapies for sepsis-induced disseminated microvascular thrombosis.

10.
Ann Chir Plast Esthet ; 69(5): 376-383, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39085017

RESUMEN

INTRODUCTION: In free flap reconstruction, improving flap tolerance to warm ischemia (WI) is fundamental. WI is the result of a venous or arterial thrombosis, which can only be addressed through surgical revision. No additional treatments have shown superior efficacy at salvaging free flaps after or during WI. Custom perfusion machines (PM), used to reduce the intensity of lesions of the flap stored in cold ischemia, have not been evaluated for WI flap salvage. This proof-of-concept study assessed whether the Lifeport® perfusion machine could improve the salvage procedure's success rates after one hour of venous WI. METHODS: Five different groups were evaluated with four porcine latissimus dorsi free flaps included in each group. Depending on the group, the flaps were subjected to one hour of WI followed by revascularization, static hypothermic submersion, or dynamic Lifeport® perfusion. Additionally, two flap perfusion liquids were evaluated: KPS-1® and IGL-1®. Biopsies were performed before in vivo warm ischemia of the flap, after in vivo warm ischemia of the flap, and after one and two hours of preservation. Interstitial edema, muscular cell size and muscular diffuse necrosis were quantified by histological assessment. RESULTS: Static submersion did not demonstrate any efficacy for venous flap salvage. Dynamic perfusion on Lifeport® machine showed a significant improvement in tissue parameters. Thrombi and fibrine, present during the WI period, were no longer visible inside vessels and the perfusion machine flow evacuated the inflammatory cells and their substrates from the flap. The flap weights did not increase during perfusion time, confirming the benefits of the Lifeport® perfusion machine. CONCLUSION: Evaluating Lifeport® advantages on human free flap salvage is necessary to confirm the benefits for the tissue and to increase post-operative results after congestive free flap revision surgery.


Asunto(s)
Colgajos Tisulares Libres , Animales , Colgajos Tisulares Libres/irrigación sanguínea , Porcinos , Perfusión/métodos , Isquemia Tibia , Terapia Recuperativa/métodos , Isquemia/cirugía
11.
Front Immunol ; 15: 1390163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840906

RESUMEN

Background: Vascularized composite allotransplantation (VCA) offers the potential for a biological, functional reconstruction in individuals with limb loss or facial disfigurement. Yet, it faces substantial challenges due to heightened immune rejection rates compared to solid organ transplants. A deep understanding of the genetic and immunological drivers of VCA rejection is essential to improve VCA outcomes. Methods: Heterotopic porcine hindlimb VCA models were established and followed until reaching the endpoint. Skin and muscle samples were obtained from VCA transplant recipient pigs for histological assessments and RNA sequencing analysis. The rejection groups included recipients with moderate pathological rejection, treated locally with tacrolimus encapsulated in triglycerol-monostearate gel (TGMS-TAC), as well as recipients with severe end-stage rejection presenting evident necrosis. Healthy donor tissue served as controls. Bioinformatics analysis, immunofluorescence, and electron microscopy were utilized to examine gene expression patterns and the expression of immune response markers. Results: Our comprehensive analyses encompassed differentially expressed genes, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathways, spanning various composite tissues including skin and muscle, in comparison to the healthy control group. The analysis revealed a consistency and reproducibility in alignment with the pathological rejection grading. Genes and pathways associated with innate immunity, notably pattern recognition receptors (PRRs), damage-associated molecular patterns (DAMPs), and antigen processing and presentation pathways, exhibited upregulation in the VCA rejection groups compared to the healthy controls. Our investigation identified significant shifts in gene expression related to cytokines, chemokines, complement pathways, and diverse immune cell types, with CD8 T cells and macrophages notably enriched in the VCA rejection tissues. Mechanisms of cell death, such as apoptosis, necroptosis and ferroptosis were observed and coexisted in rejected tissues. Conclusion: Our study provides insights into the genetic profile of tissue rejection in the porcine VCA model. We comprehensively analyze the molecular landscape of immune rejection mechanisms, from innate immunity activation to critical stages such as antigen recognition, cytotoxic rejection, and cell death. This research advances our understanding of graft rejection mechanisms and offers potential for improving diagnostic and therapeutic strategies to enhance the long-term success of VCA.


Asunto(s)
Perfilación de la Expresión Génica , Rechazo de Injerto , Transcriptoma , Alotrasplante Compuesto Vascularizado , Animales , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Porcinos , Modelos Animales de Enfermedad , Miembro Posterior
12.
Life Sci ; 350: 122742, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797365

RESUMEN

AIMS: Intramuscular fat (IMF) infiltration and extracellular matrix (ECM) deposition are characteristic features of muscle dysfunction, such as muscular dystrophy and severe muscle injuries. However, the underlying mechanisms of cellular origin, adipocyte formation and fibrosis in skeletal muscle are still unclear. MAIN METHODS: Pigs were injected with 50 % glycerol (GLY) to induce skeletal muscle injury and regeneration. The acyl chain composition was analyzed by lipidomics, and the cell atlas and molecular signatures were revealed via single-cell RNA sequencing (scRNA-seq). Adipogenesis analysis was performed on fibroblast/fibro-adipogenic progenitors (FAPs) isolated from pigs. KEY FINDINGS: The porcine GLY-injured skeletal muscle regeneration model was characterized by IMF infiltration and ECM deposition. Skeletal muscle stem cells (MuSCs) and FAP clusters were analyzed to explore the potential mechanisms of adipogenesis and fibrosis, and it was found that the TGF-ß signaling pathway might be a key switch that regulates differentiation. Consistently, activation of the TGF-ß signaling pathway increased SMAD2/3 phosphorylation and inhibited adipogenesis in FAPs, while inhibition of the TGF-ß signaling pathway increased the expression of PPARγ and promoted adipogenesis. SIGNIFICANCE: GLY-induced muscle injury and regeneration provides comprehensive insights for the development of therapies for human skeletal muscle dysfunction and fatty infiltration-related diseases in which the TGF-ß/SMAD signaling pathway might play a primary regulatory role.


Asunto(s)
Adipogénesis , Glicerol , Lipidómica , Músculo Esquelético , Regeneración , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Porcinos , Glicerol/metabolismo , Adipogénesis/efectos de los fármacos , Lipidómica/métodos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Diferenciación Celular , Metabolismo de los Lípidos/efectos de los fármacos
13.
Front Physiol ; 15: 1385277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706948

RESUMEN

Background: Electrocardiographic (ECG) features of left bundle branch (LBB) block (LBBB) can be observed in up to 20%-30% of patients suffering from heart failure with reduced ejection fraction. However, predicting which LBBB patients will benefit from cardiac resynchronization therapy (CRT) or conduction system pacing remains challenging. This study aimed to establish a translational model of LBBB to enhance our understanding of its pathophysiology and improve therapeutic approaches. Methods: Fourteen male pigs underwent radiofrequency catheter ablation of the proximal LBB under fluoroscopy and ECG guidance. Comprehensive clinical assessments (12-lead ECG, bloodsampling, echocardiography, electroanatomical mapping) were conducted before LBBB induction, after 7, and 21 days. Three pigs received CRT pacemakers 7 days after LBB ablation to assess resynchronization feasibility. Results: Following proximal LBB ablation, ECGs displayed characteristic LBBB features, including QRS widening, slurring in left lateral leads, and QRS axis changes. QRS duration increased from 64.2 ± 4.2 ms to 86.6 ± 12.1 ms, and R wave peak time in V6 extended from 21.3 ± 3.6 ms to 45.7 ± 12.6 ms. Echocardiography confirmed cardiac electromechanical dyssynchrony, with septal flash appearance, prolonged septal-to-posterior-wall motion delay, and extended ventricular electromechanical delays. Electroanatomical mapping revealed a left ventricular breakthrough site shift and significantly prolonged left ventricular activation times. RF-induced LBBB persisted for 3 weeks. CRT reduced QRS duration to 75.9 ± 8.6 ms, demonstrating successful resynchronization. Conclusion: This porcine model accurately replicates the electrical and electromechanical characteristics of LBBB observed in patients. It provides a practical, cost-effective, and reproducible platform to investigate molecular and translational aspects of cardiac electromechanical dyssynchrony in a controlled and clinically relevant setting.

14.
Laryngoscope ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738796

RESUMEN

OBJECTIVES: Animal models for laryngotracheal stenosis (LTS) are critical to understand underlying mechanisms and study new therapies. Current animal models for LTS are limited by small airway sizes compared to human. The objective of this study was to develop and validate a novel, large animal ovine model for LTS. METHODS: Sheep underwent either bleomycin-coated polypropylene brush injury to the subglottis (n = 6) or airway stent placement (n = 2) via suspension microlaryngoscopy. Laryngotracheal complexes were harvested 4 weeks following injury or stent placement. For the airway injury group, biopsies (n = 3 at each site) were collected of tracheal scar and distal normal regions, and analyzed for fibrotic gene expression. Lamina propria (LP) thickness was compared between injured and normal areas of trachea. RESULTS: No mortality occurred in sheep undergoing airway injury or stent placement. There was no migration of tracheal stents. After protocol optimization, LP thickness was significantly increased in injured trachea (Sheep #3: 529.0 vs. 850.8 um; Sheep #4: 933.0 vs. 1693.2 um; Sheep #5: 743.7 vs. 1378.4 um; Sheep #6: 305.7 vs. 2257.6 um). A significant 62-fold, 20-fold, 16-fold, 16-fold, and 9-fold change of COL1, COL3, COL5, FN1, and TGFB1 was observed in injured scar specimen relative to unaffected airway, respectively. CONCLUSION: An ovine LTS model produces histologic and transcriptional changes consistent with fibrosis seen in human LTS. Airway stent placement in this model is safe and feasible. This large airway model is a reliable and reproducible method to assess the efficacy of novel LTS therapies prior to clinical translation. LEVEL OF EVIDENCE: N/A Laryngoscope, 2024.

15.
JVS Vasc Sci ; 5: 100200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766270

RESUMEN

Objective: This study describes a novel swine model of venous thromboembolism (VTE) with reflux-induced venous hypertension. Methods: Six pigs underwent disruption of the tricuspid chordae tendineae to create reflux and venous hypertension in the femoral vein. The vein was traumatized 2 to 3 weeks later by repeated withdrawal of a slightly overinflated occlusion balloon across the lumen, followed by balloon occlusion of the outflow. A small amount of thrombin was injected into the traumatized vein segment immediately after outflow occlusion. Thrombosis of the traumatized vein evolved into an organized thrombus seven weeks later. The histological features of the harvested post-thrombotic femoral vein were studied with hematoxylin and eosin and Trichrome stains. Results: In all six pigs, initial disruption of the chordae tendineae was successfully performed to create tricuspid reflux and venous hypertension. After two-stage sequential procedures, a thrombus formed in the target femoral vein segment. Histology of the harvested thrombotic vein showed features of an organizing thrombus with collagen formation and fibrosis. Conclusions: The novel swine VTE model may serve as a platform for developing and testing human-sized therapeutic procedures and devices in translational venous research. Clinical Relevance: This study describes a swine model of VTE created by incorporating all three elements of Virchow's triad. The model uniquely incorporates reflux-induced venous hypertension, which may be used in studying venous insufficiency and VTE in those with systemic venous hypertension. Likewise, this model may serve as a platform for development and evaluation of diagnostic imaging or therapeutic procedures and devices in subjects with systemic venous hypertension.

16.
Bioengineering (Basel) ; 11(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38671772

RESUMEN

Traumatic heterotopic ossification (HO) is frequently observed in Service Members following combat-related trauma. Estimates suggest that ~65% of wounded warriors who suffer limb loss or major extremity trauma will experience some type of HO formation. The development of HO delays rehabilitation and can prevent the use of a prosthetic. To date there are limited data to suggest a standard mechanism for preventing HO. This may be due to inadequate animal models not producing a similar bone structure as human HO. We recently showed that traumatic HO growth is possible in an ovine model. Within that study, we demonstrated that 65% of sheep developed a human-relevant hybrid traumatic HO bone structure after being exposed to a combination of seven combat-relevant factors. Although HO formed, we did not determine which traumatic factor contributed most. Therefore, in this study, we performed individual and various combinations of surgical/traumatic factors to determine their individual contribution to HO growth. Outcomes showed that the presence of mature biofilm stimulated a large region of bone growth, while bone trauma resulted in a localized bone response as indicated by jagged bone at the linea aspera. However, it was not until the combinatory factors were included that an HO structure similar to that of humans formed more readily in 60% of the sheep. In conclusion, data suggested that traumatic HO growth can develop following various traumatic factors, but a combination of known instigators yields higher frequency size and consistency of ectopic bone.

17.
Cancer Manag Res ; 16: 245-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560662

RESUMEN

Purpose: Large animal models are still used in many studies because of their likeness to humans. It has not been documented that regular-sized conventional farm-breed pigs, generally bred for meat production, can be used to generate hepatocellular carcinoma (HCC) animal models. The goal of this study was to investigate how N-diethylnitrosamine (DENA) and phenobarbital (PB) together can generate HCC in ordinary farmed pigs. Materials and Methods: Conventional domestic swine (Sus scrofa domesticus) were used. DENA 15 mg/kg was intraperitoneally injected weekly for 12 weeks, while PB tablets (4 mg/kg) were also administered through food for 16 weeks. Blood testing and ultrasonography evaluation were performed to monitor the progress. Subsequently, computed tomography was conducted in cases with suspected nodules, followed by histopathological examination to confirm the diagnosis. Results: Ten swine (seven males, three females; age: 2 months; weight: 9-15 kg) were included in the study and followed up for 25 months; nine were experimental, and one was control for ethical considerations. The maximum weight of animals during this study reached 162-228 kg. The weight gain seen in the intervention swine was predominantly lower than that documented in the control. The laboratory analysis revealed no notable abnormalities in liver function markers but did demonstrate statistically significant changes in urea (p = 0.028) and creatinine (p = 0.003) levels. Ultrasonography and computed tomography showed multiple liver nodules with characteristics resembling HCC. Serial imaging screening and more extended observations revealed that all animals eventually developed tumors. Histopathological confirmation at 15-22 weeks post-induction revealed that all intervened swine developed multiple nodules of well-differentiated HCC and some with hepatic angiosarcoma. Conclusion: This study successfully generated HCC in conventional domestic swine with a DENA and PB combination. This investigation required at least 15 months to develop tumors. This model will be beneficial for future investigations of HCC in large animals.

18.
Mol Ther Methods Clin Dev ; 32(2): 101242, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38605811

RESUMEN

Neovascular age-related macular degeneration (nAMD) is a frequent cause of vision loss among the elderly in the Western world. Current disease management with repeated injections of anti-VEGF agents accumulates the risk for adverse events and constitutes a burden for society and the individual patient. Sustained suppression of VEGF using gene therapy is an attractive alternative, which we explored using adeno-associated virus (AAV)-based delivery of novel RNA interference (RNAi) effectors in a porcine model of choroidal neovascularization (CNV). The potency of VEGFA-targeting, Ago2-dependent short hairpin RNAs placed in pri-microRNA scaffolds (miR-agshRNA) was established in vitro and in vivo in mice. Subsequently, AAV serotype 8 (AAV2.8) vectors encoding VEGFA-targeting or irrelevant miR-agshRNAs under the control of a tissue-specific promotor were delivered to the porcine retina via subretinal injection before CNV induction by laser. Notably, VEGFA-targeting miR-agshRNAs resulted in a significant and sizable reduction of CNV compared with the non-targeting control. We also demonstrated that single-stranded and self-complementary AAV2.8 vectors efficiently transduce porcine retinal pigment epithelium cells but differ in their transduction characteristics and retinal safety. Collectively, our data demonstrated a robust anti-angiogenic effect of VEGFA-targeting miR-aghsRNAs in a large translational animal model, thereby suggesting AAV-based delivery of anti-VEGFA RNAi therapeutics as a valuable tool for the management of nAMD.

19.
Methods Mol Biol ; 2803: 205-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676895

RESUMEN

Diastolic dysfunction arising from alterations in myocardial structure and/or function is a central component of several cardiovascular disorders, including heart failure with preserved ejection fraction (HFpEF). Basic research aimed at understanding underlying mechanisms contributing to the development of diastolic dysfunction has generally centered upon models of left ventricular (LV) hypertrophy arising from persistent and severe elevations in myocardial afterload (e.g., aortic banding). Mechanisms of hypertrophy-independent diastolic dysfunction, on the other hand, have received less attention, even though overt anatomic LV hypertrophy is absent in many HFpEF patients. Here, we describe the development of a novel porcine model of repetitive pressure overload (RPO) in which chronic, intermittent exposure to transient episodes of hypertension produces an increase in LV stiffness, interstitial fibrosis, cardiomyocyte hypertrophy, and capillary rarefaction without significant changes in LV mass. This model offers important insight into how diastolic dysfunction and HFpEF may develop in the absence of comorbidities, sustained hypertension, or LV hypertrophy, while also providing a useful translational research tool for investigation of novel therapeutic approaches to restore myocardial compliance and improve diastolic function.


Asunto(s)
Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda , Animales , Porcinos , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Hipertensión/fisiopatología , Hipertensión/etiología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Miocardio/patología , Miocardio/metabolismo , Fibrosis , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
20.
Osteoarthritis Cartilage ; 32(6): 690-701, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442768

RESUMEN

OBJECTIVE: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS: Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION: The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Tibia , Animales , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/patología , Ovinos , Tibia/diagnóstico por imagen , Tibia/patología , Cartílago Articular/patología , Cartílago Articular/diagnóstico por imagen , Femenino , Microtomografía por Rayos X , Osteotomía , Fémur/diagnóstico por imagen , Fémur/patología , Metaloproteinasa 13 de la Matriz/metabolismo , Meniscectomía , Colágeno Tipo II/metabolismo , Meniscos Tibiales/cirugía , Meniscos Tibiales/diagnóstico por imagen , Artritis Experimental/patología , Artritis Experimental/diagnóstico por imagen , Modelos Animales de Enfermedad , Proteína ADAMTS5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...