Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.392
Filtrar
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
2.
Pract Lab Med ; 42: e00429, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39386263

RESUMEN

Objective: Enteric fever (EF), a potentially fatal febrile illness, is prevalent in developing countries. Elevated levels of lipase and amylase in serum, typically associated with acute pancreatitis (AP), have been observed in patients with EF. The elevated enzymes in both conditions may lead to diagnostic confusion and care delays. This study aimed to determine biochemical indices that are peculiar to EF and AP. Methods: A cross-sectional comparative study was conducted at the Korle-Bu Teaching Hospital, Ghana. Volunteers were categorized into three groups: EF (n = 32), AP (n = 30) and healthy controls (n = 31). A standard questionnaire was used to collect socio-demographic and clinical information from the participants. Blood and stool samples were obtained, followed by biochemical analysis: total amylase, lipase, pancreatic amylase, serum elastase 1, hepatic enzymes, calcium, magnesium, phosphate, stool colour, stool pH, and stool fat presence. Results: The AP group displayed higher total amylase, lipase, elastase-1, alkaline phosphatase, aspartate aminotransferase, and gamma-glutamyl transferase levels compared to the EF and control groups (p < 0.05 respectively). Elastase 1 levels were found to be high in all AP participants, whereas no elevations were observed in the EF group. Positive associations were observed in the AP and EF groups for lipase vs total amylase (ρ = .543, p = 0.001; ρ = .543, p = 0.001 for both). Conclusions: Elevated levels of total/pancreatic amylase and lipase were found to be indicative of a patient with AP and EF. Further, elastase-1 was found to be a good biomarker to distinguish between AP and EF.

3.
J Hepatol ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357546

RESUMEN

BACKGROUND AND AIMS: Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice. METHODS: Streptozotocin-injected male mice were fed an HFD to induce MASH. Mice receiving the ATGL inhibitor, Atglistatin (ATGLi), were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated its benefits on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model. RESULTS: ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic TAG-species containing PUFAs like linoleic acids as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signaling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors. CONCLUSIONS: Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BAs, interfering with dietary lipid absorption, and improving metabolic disturbances. The validation with NG-497 opens a new therapeutic perspective for MASLD. IMPACT AND IMPLICATIONS: The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a crucial public health concern. Since adherence to behavioural interventions is limited, pharmacological strategies are necessary, as highlighted by the recent FDA approval of resmetirom. However, since our current mechanistic understanding and pathophysiology-oriented therapeutic options for MASLD are still limited, novel mechanistic insights are urgently needed. Our present work uncovers that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis using Atglistatin (ATGLi), improves metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and associated key features of metabolic dysfunction in a mouse model of MASH and MCD-induced liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings open a new avenue for MASLD treatment development by inhibiting human ATGL activity.

4.
Cell Mol Life Sci ; 81(1): 418, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368012

RESUMEN

The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3ß pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.


Asunto(s)
Diferenciación Celular , Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Monoacilglicerol Lipasas , Osteogénesis , Animales , Masculino , Ratas , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Glucocorticoides/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/genética , Osteogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Sprague-Dawley , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Transducción de Señal/efectos de los fármacos
5.
Int J Biol Macromol ; 280(Pt 1): 136356, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374721

RESUMEN

The stability of the immobilized lipase is the key factor that determines the economy and feasibility of its industrial application. Here, two robust immobilized Candida antarctica lipase B (CALB) were prepared through adjusting the surface properties of ECR1030 resin. Silane coupling agent (SCA) and dialdehyde cellulose (DAC) were employed to modify the carrier surface. Contact angle measurement showed that the hydrophobicity of the modified carrier increased first, and then decreased with the increase of the chain length of SCA. FTIR results showed that Si-O-Si bond and aldehyde group were attached to ECR1030, respectively, indicating that the ECR1030 resin was successfully modified. Meanwhile, the NH and CN bond were observed in the corresponding immobilized CALB, suggesting CALB was immobilized onto the modified carriers. The effects of immobilization conditions on CALB immobilization was further investigated, and the C8-ECR1030-CALB and DAC-ECR1030-CALB with the activity of 12,736 U/g and 11,962 U/g were obtained. Moreover, the stability of the immobilized lipases was evaluated and compared with the commercial Novozym 435. The C8-ECR1030-CALB and DAC-ECR1030-CALB exhibited comparable or superior stability to Novozym 435 and showed better deacidification effect than Novozym 435. This study paves road for further study involving preparation of highly stable immobilized lipase.

6.
J Agric Food Chem ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378313

RESUMEN

Precisely controlling enzyme conformation to enhance catalytic performance is a highly sought-after yet challenging goal in the immobilization of biocatalysts. Excessively strong enzyme-carrier interactions can restrict enzyme dynamics and reduce catalytic efficiency, while excessively weak interactions may lead to enzyme leakage, thereby reducing reusability. In this study, we developed a novel strategy to finely regulate the interaction between the carrier and the enzyme through the adjustment of the ratio of amino and octadecyl functional groups. The expressed activity of the novel immobilized lipase, CRL@AOMR, was 1.32- and 2.34-fold higher than that of the monofunctional macroporous resin. Moreover, the synthesis of various phytosterol esters in solvent-free systems was conducted as a model reaction to investigate the utilization of CRL@AOMR in different reactions. Under optimized conditions, an impressive yield of 96.1% for phytosterol oleate was achieved and a yield of 76.2% was maintained even after six cycles of utilization (288 h). This study demonstrates the potential feasibility of developing immobilization strategies via dual modification of amino and alkyl groups, which is a potential general strategy for other enzymes with surface lysine.

7.
J Sep Sci ; 47(19): e202400325, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39375897

RESUMEN

The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.


Asunto(s)
Biocombustibles , Lipasa , Serratia , Aceite de Soja , Lipasa/metabolismo , Lipasa/química , Biocombustibles/análisis , Serratia/enzimología , Serratia/metabolismo , Serratia/química , Aceite de Soja/química , Aceite de Soja/metabolismo , Esterificación , Cromatografía Líquida de Alta Presión , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Fosfolipasas/metabolismo , Fosfolipasas/química , Espectrometría de Masas en Tándem
8.
Int J Biol Macromol ; 281(Pt 1): 136221, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362445

RESUMEN

Novel hydrogel biocatalysts with immobilized lipase, stabilized by ionic liquids (ILs) of different hydrophobicity, were synthesized and evaluated. Variations of the time of immobilization and ratio of substrates during hydrogel synthesis were considered to obtain the most stable biocatalyst with the highest activity. Physicochemical characterization proved the success of the hydrogel synthesis and enzyme deposition on the surface of the support. Nevertheless, the key objective was to produce a biocatalyst for further application in ibuprofen methyl ester resolution, with the aim of obtaining an enantiomerically pure product. The hydrogel biocatalysts obtained in the presence of 5 wt% ILs after 8 h of immobilization achieved the highest activity recovery of 62 %. After 10 reaction cycles, enzymatic activity was still above 60 %, and the negative effect of pH and temperature on the activity of immobilized lipase was much lower than in the case of the free enzyme. After application of the catalyst in the resolution of ibuprofen methyl ester, the enantiomeric excess and conversion rate of the process were obtained for the dynamic kinetic resolution in isooctane. A conversion rate of 95 % was achieved due to the stabilization of the biocatalyst with IL and its resulting high catalytic activity. The study thus provides the pharmaceutical industry with a new potential approach with a strong scientific foundation.

9.
Colloids Surf B Biointerfaces ; 245: 114256, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39305553

RESUMEN

In this study, the covalent organic framework immobilized Rhizomucor miehie lipase COF@RML as a novel biocatalyst was applied in the enzymatic synthesis of OPO structured lipids (1, 3-dioleoyl-2-palmitoylglycerol). The impact of reaction medium, substrate molar ratio, enzyme addition amount, reaction time and temperature on the enzymatic synthesis of OPO structured lipids were studied. Furthermore, the effects of ultrasonic power and ultrasonic time on the synthesis of OPO structural lipids were studied. The results showed that ultrasonication could increase the yeild of OPO structured lipids by improving substrate mass transfer and enzyme particle dispersion. The optimal process for the synthesis of OPO structured lipids was obtained. When the ultrasonic power was set at 90 W, ultrasonic time at 12 minutes, enzyme addition amount at 10 wt%, substrate molar ratio at 1:8, reaction temperature at 45 °C, and reaction time at 6 hours, the yield of OPO structured lipids reached a remarkable 51.27 %. Finally, the commercial lipase Lipozyme RM IM was compared with the COF@RML. The findings indicated that COF@RML immobilized enzyme had better application value in the synthesis of OPO structured lipids.

10.
PeerJ ; 12: e17914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221269

RESUMEN

Background: Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods: The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results: GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.


Asunto(s)
Antioxidantes , Frutas , Lipasa , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Frutas/química , Frutas/metabolismo , Antioxidantes/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Cromatografía Líquida de Alta Presión/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , alfa-Glucosidasas/metabolismo , Espectrometría de Masas en Tándem/métodos
11.
J Biol Eng ; 18(1): 46, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223667

RESUMEN

Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.

12.
J Enzyme Inhib Med Chem ; 39(1): 2398561, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39223707

RESUMEN

Obesity is acknowledged as a significant risk factor for various metabolic diseases, and the inhibition of human pancreatic lipase (hPL) can impede lipid digestion and absorption, thereby offering potential benefits for obesity treatment. Anthraquinones is a kind of natural and synthetic compounds with wide application. In this study, the inhibitory effects of 31 anthraquinones on hPL were evaluated. The data shows that AQ7, AQ26, and AQ27 demonstrated significant inhibitory activity against hPL, and exhibited selectivity towards other known serine hydrolases. Then the structure-activity relationship between anthraquinones and hPL was further analysed. AQ7 was found to be a mixed inhibition of hPL through inhibition kinetics, while AQ26 and AQ27 were effective non-competitive inhibition of hPL. Molecular docking data revealed that AQ7, AQ26, and AQ27 all could associate with the site of hPL. Developing hPL inhibitors for obesity prevention and treatment could be simplified with this novel and promising lead compound.


Asunto(s)
Antraquinonas , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos , Lipasa , Páncreas , Relación Estructura-Actividad , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Páncreas/enzimología , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química
13.
Ann Med Surg (Lond) ; 86(9): 5639-5642, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239060

RESUMEN

Introduction and importance: Necrotizing pancreatitis is an uncommon diagnosis in pediatric patients. Early diagnosis is difficult as the presentation varies significantly. However, it should be in the differential diagnosis of abdominal pain in the pediatric age group. Case presentation: An 8-year-old girl arrived with a 1-day history of vomiting, constipation, and abrupt, increasing epigastric discomfort. She didn't have any noteworthy family or medical background. Upon examination, she seemed to be afebrile but also had discomfort in her stomach and symptoms of dehydration. An enlarged pancreas with necrotizing pancreatitis was seen in the first imaging. She received intravenous fluids, antibiotics, and analgesics as a treatment for her acute severe pancreatitis diagnosis. Since the patient continued to have fever, meropenem was prescribed in place of ceftriaxone at first. After 10 days of uncomplicated hospitalization, she was released from the hospital. Discussion: Once rare, pediatric pancreatitis now affects 3-13 out of every 100 000 people yearly. Although it is uncommon (<1% in children), necrotizing pancreatitis can happen. Its causes are similar to those of acute pancreatitis, involving genetic abnormalities and certain drugs. Abdominal discomfort, fever, vomiting, and nausea are among the symptoms. Imaging methods like contrast-enhanced CT are used in diagnosis. Surgery has given way to less intrusive techniques like catheter drainage as a form of treatment. Surgery is seldom required in pediatric instances, which are often handled conservatively. Conclusion: Childhood necrotizing pancreatitis is uncommon but dangerous; prompt diagnosis and prompt treatment are essential.

14.
J Chromatogr A ; 1736: 465358, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39277979

RESUMEN

Exploring the potential of natural products against diabetes and obesity is in demand nowadays. Pancreatic α-amylase and pancreatic lipase are the drug targets to minimize the absorption of glucose from starch and fatty acids from lipids, respectively. In this study, five Piper species, namely P. sarmentosum (Ps), P. wallichii (Pw), P. retrofractum (Pr), P. nigrum (Pn), and P. betle (Pb), which are commonly used as food ingredients and traditional medicines, were evaluated for their inhibitory activities against pancreatin using the microtiter plate method. Additionally, pancreatin inhibitors were identified through a cost-effective high-performance thin-layer chromatography (HPTLC)-bioautography developed using red starch and p-nitrophenyl palmitate, corresponding to anti-amylase and -lipase activities, respectively. Of the 15 samples tested, leaf samples from Pb, which had the highest total phenolic and total flavonoid contents, exhibited remarkable inhibitory activity against pancreatin, with a relative amylase inhibitory capacity (RAIC) ranging between 4.260 × 10-5 and 4.861 × 10-5 and a reciprocal half-maximal inhibitory concentration (1/IC50, PTL) of 0.390-0.510 (mg/mL)-1. Additionally, Ps samples demonstrated the second-ranked anti-pancreatin activity. Principal component analysis indicated that total phenolic content contributed to the anti-pancreatin activities of Pb samples. The anti-pancreatin bands were isolated and identified as caffeic acid, myricetin, genistein, piperine, and eugenol. Myricetin, in the roots of Ps samples, showed notable anti-pancreatin activity, which was consistent with results from the in silico prediction toward pancreatic α-amylase and pancreatic lipase. Caffeic acid and eugenol were present in Pb samples. In conclusion, the developed cost-effective pancreatin HPTLC-bioautography efficiently identified amylase and lipase inhibitors from Piper herbs, which supported the use of these plants for antidiabetes and anti-obesity.

15.
J Sci Food Agric ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258418

RESUMEN

BACKGROUNDS: Glycerolysis, with its advantages of readily available raw materials, simple operation, and mild reaction conditions, is a primary method for producing diacylglycerol (DAG). However, enzymatic glycerolysis faces challenges such as high enzyme costs, low reuse efficiency, and poor stability. The study aims to develop a cost-effective immobilized enzyme by covalently binding lipase to pre-activated carriers through the selection of suitable lipases, carriers, and activating agents. The optimization is intended to improve the glycerolysis reaction for efficient DAG production. RESULTS: Lipase CN-TL (from Thermomyces lanuginosus) was selected through glycerolysis reaction and molecular docking to catalyze the glycerolysis reaction. Optimizing the immobilization method by covalently binding CN-TL to poly(ethylene glycol) diglycidyl ether (PEGDGE)-preactivated resin LX-201A resulted in the preparation of the immobilized enzyme TL-PEGDGE-LX. The immobilized enzyme retained over 90% of its initial activity after five consecutive reactions, demonstrating excellent reusability. The DAG content in the product remained at 84.8% of its initial level, further highlighting the enzyme's potential for reusability and its promising applications in the food and oil industries. CONCLUSIONS: The immobilized lipase TL-PEGDGE-LX, created by covalently immobilizing lipase CN-TL on PEGDGE-preactivated carriers, demonstrated broad applicability and excellent reusability. This approach offers an economical and convenient immobilization strategy for the enzymatic glycerolysis production of DAG. © 2024 Society of Chemical Industry.

16.
Foods ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39272562

RESUMEN

Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that supplementation with triacylglycerols (TAGs) with an ARA:DHA (w/w) ratio of 2:1 may be optimal for preterm infants, as presented in commercial formulas such as Formulaid™. This study explored methods to produce TAGs with a 2:1 ratio (ARA:DHA), particularly at the more bioavailable sn-2 position of the glycerol backbone. Blending and enzymatic acidolysis of microalgae oil (rich in DHA) and ARA-rich oil yielded products with the desired ARA:DHA ratio, enhancing sn-2 composition compared to Formulaid™ (1.6 for blending and 2.3 for acidolysis versus 0.9 in Formulaid™). Optimal acidolysis conditions were 45 °C, a 1:3 substrate molar ratio, 10% Candida antarctica lipase, and 4 h. The process was reproducible, and scalable, and the lipase could be reused. In vitro digestion showed that 75.5% of the final product mixture was bio-accessible, comprising 19.1% monoacylglycerols, ~50% free fatty acids, 14.6% TAGs, and 10.1% diacylglycerols, indicating better bio-accessibility than precursor oils.

17.
Polymers (Basel) ; 16(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39274164

RESUMEN

This article investigates the activation of surface groups of poly(ethylene terephthalate) (PET) fibers in woven fabric by hydrolysis and their functionalization with chitosan. Two types of hydrolysis were performed-alkaline and enzymatic. The alkaline hydrolysis was performed in a more sustainable process at reduced temperature and time (80 °C, 10 min) with the addition of the cationic surfactant hexadecyltrimethylammonium chloride as an accelerator. The enzymatic hydrolysis was performed using Amano Lipase A from Aspergillus niger (2 g/L enzyme, 60 °C, 60 min, pH 9). The surface of the PET fabric was functionalized with the homogenized gel of biopolymer chitosan using a pad-dry-cure process. The durability of functionalization was tested after the first and tenth washing cycle of a modified industrial washing process according to ISO 15797:2017, in which the temperature was lowered from 75 °C to 50 °C, and ε-(phthalimido) peroxyhexanoic acid (PAP) was used as an environmentally friendly agent for chemical bleaching and disinfection. The influence of the above treatments was analyzed by weight loss, tensile properties, horizontal wicking, the FTIR-ATR technique, zeta potential measurement and SEM micrographs. The results indicate better hydrophilicity and effectiveness of both types of hydrolysis, but enzymatic hydrolysis is more environmentally friendly and favorable. In addition, alkaline hydrolysis led to a 20% reduction in tensile properties, while the action of the enzyme resulted in a change of only 2%. The presence of chitosan on polyester fibers after repeated washing was confirmed on both fabrics by zeta potential and SEM micrographs. However, functionalization with chitosan on the enzymatically bioactivated surface showed better durability after 10 washing cycles than the alkaline-hydrolyzed one. The antibacterial activity of such a bio-innovative modified PET fabric is kept after the first and tenth washing cycles. In addition, applied processes can be easily introduced to any textile factory.

18.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274989

RESUMEN

In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase.


Asunto(s)
Diglicéridos , Estabilidad de Enzimas , Enzimas Inmovilizadas , Lipasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Diglicéridos/química , Concentración de Iones de Hidrógeno , Glicerol/química , Temperatura , Eurotiales/enzimología , Biocatálisis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
19.
Fish Physiol Biochem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283413

RESUMEN

The Pacific fat sleeper, Dormitator latifrons, is an omnivorous freshwater fish that primarily feeds on detritus. Our understanding of the digestive physiology of this species still needs to be completed, particularly concerning the characterization of its digestive enzymes. This information is crucial in guiding the design of diets that promote optimal digestion of this species, which has the potential for aquaculture. Thus, this study aimed to optimize enzymatic methods and characterize the digestive enzymes of the digestive tract regions: anterior region (AR), middle region (MR), posterior region (PR), and hepatopancreas (HP). Total acid protease, total alkaline protease, amylase, and lipase activities were measured. The enzymatic methods were optimized at an eco-physiological temperature of 25 °C based on extract volume, extract dilution, incubation time, pH, and CaCl2 concentration to determine specific activity (U/mg of protein). The optimal pH for acid protease (AR) was pH 2.0; while for alkaline protease, the optimal pH was between 7.5 and 11.0. For AR, chymotrypsin was pH 7.0; for the remaining digestive regions, it was pH 9.0-11.0. The optimal pH for amylase was 6.0 to 7.5 (all regions), and for lipase, it was between 7.0 and 11.0, with two apparent in vitro activity peaks (PR). HP experimental samples showed low or no chymotrypsin, amylase, and lipase activity. CaCl2 did not affect enzyme activity except for amylase and lipase (only in PR and HP, respectively). The acid proteolytic activity (pH 2.0) found in AR and the proteolytic inhibition by pepstatin suggest the presence of a stomach.

20.
Gastro Hep Adv ; 3(6): 711-723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280921

RESUMEN

Background and Aims: Recent studies showed that patients suffering from lysosomal acid lipase deficiency (LAL-D) benefit from enzyme replacement therapy; however, liver histopathology improved in some but not all patients. We hypothesized that the pan-peroxisome proliferator-activated receptor agonist lanifibranor may have beneficial effects on liver inflammation in LAL knockout (Lal-/-) mice based on its promising results in alleviating liver inflammation in patients with metabolic dysfunction-associated steatohepatitis. Methods: Female Lal-/- mice were daily gavaged with lanifibranor or vehicle for 21 days. The effects of the treatment were assessed by measuring body and organ weights, plasma lipids and lipoproteins, as well as hematological parameters, followed by liver proteomics and metabolomics. Results: Lanifibranor treatment slightly altered organ weights without affecting the total body weight of Lal-/- mice. We observed major changes in the proteome, with multiple proteins related to lipid metabolism, peroxisomal, and mitochondrial activities being upregulated and inflammation-related proteins being downregulated in the livers of treated mice. Hepatic lipid levels and histology remained unaltered, whereas plasma triacylglycerol and total cholesterol levels were decreased and the lipoprotein profile of lanifibranor-treated Lal-/- mice improved. Conclusion: Lanifibranor treatment positively affected liver inflammation and dyslipidemia in Lal-/- mice. These findings suggest the necessity of a further combined study of lanifibranor with enzyme replacement therapy in Lal-/- mice to improve the phenotype. Moreover, there is a compelling rationale for conducting clinical trials to assess the efficacy of lanifibranor as a potential treatment option for LAL-D in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...