Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2400680, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126237

RESUMEN

Understanding the growth mechanisms of nanomaterials is crucial for effectively controlling their morphology which may affect their properties. Here, the growth process of indium nanoplates is studied using in situ liquid cell transmission electron microscopy. Quantitative analysis shows that the growth of indium nanoplate is limited by surface reaction. Besides, the growth process has two stages, which is different from that of other metal nanoplates reported previously. At the first stage, indium particles transform gradually from face-centered cubic to body-centered tetragonal (bct) structure as the seeds grow. At the second stage, the seeds grow faster than at the first stage and form indium triangular nanoplates. Indium triangular nanoplates have a bct structure with {011}-twin, which is found to form through kinetic reactions. In addition, the shape evolution of truncated triangle nanoplate with multiple twin planes is studied. The growth rate of truncated edge changes with the varied number of re-entrant grooves. The present work provides valuable insights into the growth mechanism of metal nanoplates with low-symmetric structure and the role of twin planes in the shape evolution of plate-like metal nanomaterials.

2.
Small ; : e2403969, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109568

RESUMEN

Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.

3.
Nano Lett ; 24(33): 10161-10168, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105722

RESUMEN

We report a systematic analysis of electron beam damage of the zeolitic imidazolate framework (ZIF-8) during liquid cell transmission electron microscopy (LCTEM). Our analysis reveals ZIF-8 morphology is strongly affected by solvent used (water vs dimethylformamide), electron flux applied, and imaging mode (i.e., TEM vs STEM), while ZIF-8 crystallinity is primarily affected by accumulated electron fluence. Our observations indicate that the stability of ZIF-8 morphology is higher in dimethylformamide (DMF) than in water. However, in situ electron diffraction indicates that ZIF-8 nanocrystals lose crystallinity at critical fluence of ∼80 e-Å-2 independent of the presence of solvent. Furthermore, 4D-STEM analysis as a post-mortem method reveals the extent of electron beam damage beyond the imaging area and indicates that radiolytic reactions are more pronounced in TEM mode than in STEM mode. These results illustrate the significance of radiolysis occurring while imaging ZIF-8 and present a workflow for assessing damage in LCTEM experiments.

4.
ACS Nano ; 18(29): 19220-19231, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38976597

RESUMEN

Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.

5.
Nanotechnology ; 35(27)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38574465

RESUMEN

The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.

6.
Nano Lett ; 24(13): 3890-3897, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526426

RESUMEN

Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.

7.
ACS Appl Mater Interfaces ; 16(9): 11552-11560, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408369

RESUMEN

Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (-0.3 VRHE), they dissolved over time at larger negative potentials (-0.4 and -0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.

8.
Small Methods ; : e2301539, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385838

RESUMEN

In situ Transmission Electron Microscopy (TEM) stands as an invaluable instrument for the real-time examination of the structural changes in materials. It features ultrahigh spatial resolution and powerful analytical capability, making it significantly versatile across diverse fields. Particularly in the realm of Lithium-Ion Batteries (LIBs), in situ TEM is extensively utilized for real-time analysis of phase transitions, degradation mechanisms, and the lithiation process during charging and discharging. This review aims to provide an overview of the latest advancements in in situ TEM applications for LIBs. Additionally, it compares the suitability and effectiveness of two techniques: the open cell technique and the liquid cell technique. The technical aspects of both the open cell and liquid cell techniques are introduced, followed by a comparison of their applications in cathodes, anodes, solid electrolyte interphase (SEI) formation, and lithium dendrite growth in LIBs. Lastly, the review concludes by stimulating discussions on possible future research trajectories that hold potential to expedite the progression of battery technology.

9.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319745

RESUMEN

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

10.
Proc Natl Acad Sci U S A ; 121(3): e2314797121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194452

RESUMEN

Assessing the ergodicity of graphene liquid cell electron microscope measurements, we report that loop states of circular DNA interconvert reversibly and that loop numbers follow the Boltzmann distribution expected for this molecule in bulk solution, provided that the electron dose is low (80-keV electron energy and electron dose rate 1-20 e- Å-2 s-1). This imaging technique appears to act as a "slow motion" camera that reveals equilibrated distributions by imaging the time average of a few molecules without the need to image a spatial ensemble.


Asunto(s)
Electrones , Grafito , Microscopía Electrónica , Movimiento (Física) , Conformación de Ácido Nucleico
11.
Microsc Microanal ; 30(1): 77-84, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38285924

RESUMEN

We have studied a machine learning (ML) technique for refining images acquired during in situ observation using liquid-cell transmission electron microscopy. Our model is constructed using a U-Net architecture and a ResNet encoder. For training our ML model, we prepared an original image dataset that contained pairs of images of samples acquired with and without a solution present. The former images were used as noisy images, and the latter images were used as corresponding ground truth images. The number of pairs of image sets was 1,204, and the image sets included images acquired at several different magnifications and electron doses. The trained model converted a noisy image into a clear image. The time necessary for the conversion was on the order of 10 ms, and we applied the model to in situ observations using the software Gatan DigitalMicrograph (DM). Even if a nanoparticle was not visible in a view window in the DM software because of the low electron dose, it was visible in a successive refined image generated by our ML model.

12.
Nano Lett ; 24(4): 1168-1175, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251890

RESUMEN

Unveiling materials' corrosion pathways is significant for understanding the corrosion mechanisms and designing corrosion-resistant materials. Here, we investigate the corrosion behavior of Sn@Ni3Sn4 and Sn nanocrystals in an aqueous solution in real time by using high-resolution liquid cell transmission electron microscopy. Our direct observation reveals an unprecedented level of detail on the corrosion of Sn metal with/without a coating of Ni3Sn4 at the nanometric and atomic levels. The Sn@Ni3Sn4 nanocrystals exhibit "pitting corrosion", which is initiated at the defect sites in the Ni3Sn4 protective layer. The early stage isotropic etching transforms into facet-dependent etching, resulting in a cavity terminated with low-index facets. The Sn nanocrystals under fast etching kinetics show uniform corrosion, and smooth surfaces are obtained. Sn nanocrystals show "creeping-like" etching behavior and rough surfaces. This study provides critical insights into the impacts of coating, defects, and ion diffusion on corrosion kinetics and the resulting morphologies.

13.
Adv Mater ; 36(9): e2307045, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787743

RESUMEN

Ti3 C2 Tx MXene film is promising for low-voltage electrochemical actuators (ECAs) due to its excellent electrical conductivity, volumetric capacitance, and mechanical properties. However, its in-plane actuation is limited to little intralayer strain of MXene sheets under polarization. Here it is demonstrated that a simple tetrabutylammonium (TBA) functionalization of MXene improves the in-plane actuation strain by 337% and also enhances the mechanical property and stability in air and the electrolyte. Various in situ characterizations reveal that the improved actuation is ascribed to the co-insertion/desertion of TBA and Li ions into/from MXene interlayer galleries and inter-edge gaps that causes a large in-plane sliding of MXene sheets under negative/positive polarizations. The assembled bending actuator has a high strength and modulus and generates a peak-to-peak strain difference of 0.771% and a blocking force up to 51.5 times its own weight under 1 V. The designed soft robotic tweezer can grasp an object under 1 V and hold it firmly under 0 V. The novel sheet sliding mechanism resembling the filament sliding theory in skeletal muscles may inspire the design of high-performance actuators with other nanomaterials.

14.
Adv Mater ; 36(6): e2309936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016113

RESUMEN

Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.


Asunto(s)
Grafito , Grafito/química , Amiloide/química , Electrones , Péptidos beta-Amiloides , Microscopía Electrónica de Transmisión
15.
Ultramicroscopy ; 257: 113894, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056395

RESUMEN

In-situ liquid cell transmission electron microscopy (LCTEM) with electrical biasing capabilities has emerged as an invaluable tool for directly imaging electrode processes with high temporal and spatial resolution. However, accurately quantifying structural changes that occur on the electrode and subsequently correlating them to the applied stimulus remains challenging. Here, we present structural dissimilarity (DSSIM) analysis as segmentation-free video processing algorithm for locally detecting and quantifying structural change occurring in LCTEM videos. In this study, DSSIM analysis is applied to two in-situ LCTEM videos to demonstrate how to implement this algorithm and interpret the results. We show DSSIM analysis can be used as a visualization tool for qualitative data analysis by highlighting structural changes which are easily missed when viewing the raw data. Furthermore, we demonstrate how DSSIM analysis can serve as a quantitative metric and efficiently convert 3-dimensional microscopy videos to 1-dimenional plots which makes it easy to interpret and compare events occurring at different timepoints in a video. In the analyses presented here, DSSIM is used to directly correlate the magnitude and temporal scale of structural change to the features of the applied electrical bias. ImageJ, Python, and MATLAB programs, including a user-friendly interface and accompanying documentation, are published alongside this manuscript to make DSSIM analysis easily accessible to the scientific community.

16.
Nano Lett ; 23(23): 10725-10730, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37988597

RESUMEN

Hollow bimetallic nanoparticles (NPs) formed from metal oxide NP templates are widely used catalysts for hydrogen evolution and CO2 reduction reactions. Despite their importance in catalysis, the details of how these NPs form on the NP templates remain unclear. Here, using in situ liquid-phase transmission electron microscopy (TEM) imaging, we describe the conversion of Cu2O template NPs to hollow PdCu NPs. Our observations show that a polycrystalline PdCu shell forms on the surface of the template via a galvanic replacement reaction while the template undergoes anisotropic etching. This study provides important insights into the synthesis of hollow metallic nanostructures from metal oxide templates.

17.
ACS Nano ; 17(24): 24802-24813, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37890869

RESUMEN

Structural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited. One main reason is the fragility of such crystals. Protein crystals can be easily damaged by mechanical stress, change in temperature, or buffer conditions as well as by electron irradiation. This work demonstrates a methodology to preserve these nanocrystals in their natural environment at room temperature for electron diffraction experiments as an alternative to existing cryogenic techniques. Lysozyme crystals in their crystallization solution are hermetically sealed via graphene-coated grids, and their radiation damage is minimized by employing a low-dose data collection strategy in combination with a hybrid-pixel direct electron detector. Diffraction patterns with reflections of up to 3 Å are obtained and successfully indexed using a template-matching algorithm. These results demonstrate the feasibility of in situ protein electron diffraction. The method described will also be applicable to structural studies of hydrated nanocrystals important in many research and technological developments.


Asunto(s)
Electrones , Proteínas , Temperatura , Proteínas/química , Cristalografía por Rayos X , Difracción de Rayos X
18.
Microsc Microanal ; 29(6): 1940-1949, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37851094

RESUMEN

Liquid cell transmission electron microscopy (LC-TEM) is a unique technique that permits in situ observations of various phenomena in liquids with high spatial and temporal resolutions. One difficulty with this technique is the control of the environmental conditions in the observation area. Control of the temperature ranging from room temperature to minus several tens of degrees Celsius, is desirable for controlling the supersaturation in various materials and for observing crystallization more easily. We have developed a cooling transmission electron microscopy specimen holder that uses Peltier devices, and we have combined it with a liquid cell to realize accurate temperature control in LC-TEM. We evaluated this system by using water as a specimen. Motionless bubbles, shown to be voids containing pressurized gas, formed in the specimen sometime after the temperature had reached -12°C. An electron diffraction pattern showed that the specimen turned into ice Ih after the formation of these bubbles, confirming that our system works properly and can induce crystallization. In addition, we analyzed the behavior of bubbles formed in the ice Ih, and we discussed the formation of these bubbles and their internal pressure.

19.
ACS Nano ; 17(20): 20434-20444, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37831942

RESUMEN

The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting further electrolyte decomposition, extending the battery's cycle life. Insights into SEI growth and evolution in terms of structure and composition remain difficult to access. To unravel the formation of the SEI layer during the first cycles, operando electrochemical liquid cell scanning transmission electron microscopy (ec-LC-STEM) is employed to monitor in real time the nanoscale processes that occur at the anode-electrolyte interface in their native electrolyte environment. The results show that the formation of the SEI layer is not a one-step process but comprises multiple steps. The growth of the SEI is initiated at low potential during the first charge by decomposition of the electrolyte leading to the nucleation of inorganic nanoparticles. Thereafter, the growth continues during subsequent cycles by forming an island-like layer. Eventually, a dense layer is formed with a mosaic structure composed of larger inorganic patches embedded in a matrix of organic compounds. While the mosaic model for the structure of the SEI is generally accepted, our observations document in detail how the complex structure of the SEI is built up during discharge/charge cycling.

20.
Nano Lett ; 23(16): 7319-7326, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535017

RESUMEN

Reactive oxygen species (ROS) widely participate in a variety of chemical reactions in biological and chemical applications. However, due to the extremely short lifetime of most ROS, conventional ROS-detecting techniques cannot show real-time dynamic changes of ROS-driven chemical reactions and identify the actual role of individual reactive species in these reactions. Herein, using in situ liquid cell TEM complemented by ex situ experiments, we directly visualize ROS-driven rapid etching of Prussian bule (PB) in real time and identify the dominant reactive species in etching processes. The results reveal that highly oxidative •OH is the dominant reactive radical in ROS-driven rapid chemical etching and hollow mesoporous PB nanoparticles can be synthesized on a minute-level time scale via •OH-dominated rapid etching. This work provides insight into ROS-related oxidation, which can continuously improve our understanding of ROS chemistry and make ROS more widely applicable in advanced chemical etching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...