Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.083
Filtrar
1.
Ecol Evol ; 14(8): e11724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114175

RESUMEN

In this study, we examined the relationship between sea surface temperature (SST) and phytoplankton abundance in coastal regions of the Brazilian South Atlantic: São Paulo, Paraná, and Santa Catarina, and the Protection Area of Southern right whales (Eubalaena australis) in Santa Catarina (APA), a conservation zone established along 130 km of coastline. Using SST and chlorophyll-a (Chl-a) data from 2002 to 2023, we found significant differences in SST between the regions, with São Paulo having the highest SST, followed by Paraná and Santa Catarina. All locations showed a consistent increase in SST over the years, with North Santa Catarina, APA and São Paulo experiencing the lowest rate of increase. Correlation analyses between SST and Chl-a revealed a stronger inverse relationship in North Santa Catarina and APA, indicating an increased response of Chl-a to SST variations in this region. The presence of protected area appears to play an essential role in reducing the negative impacts of increasing SST. Specifically, while there is a wealth of research on the consequences of global warming on diverse coastal and oceanic areas, heterogeneity among different settings persists and the causes for this necessitating attention. Our findings have implications for both localized scientific approaches and broader climate policies, emphasizing the importance of considering coastal ecosystem resilience to climate change in future conservation and adaptation strategies.

2.
Nanotechnology ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116890

RESUMEN

Translation of silver-based nanotechnology "from bench to bedside" requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. On basis of spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests and cellular inspection we determine that, at extremely low nanosilver concentrations (0.125 - 2.5 µg mL-1) there is a relevant interaction effect on serum albumin and on red blood cells. The explanation has its origin in the surface charge distribution of nanosilver and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level generating a compaction of the native protein molecule, while the spherical nanosilver, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs / BSA ≅ 0.044 molar ratio values without altering the coagulation cascade tests, although the spherical-shaped nanosilver has a negative impact on red blood cells. Overall, our results suggest that the electron distributions of nanosilver, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins and red blood cells' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.

3.
ACS Sens ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120046

RESUMEN

The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.

4.
Adv Sci (Weinh) ; : e2404652, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120461

RESUMEN

The massive accumulation of exudate containing high concentrations of glucose causes wound infection and triggers the release of inflammatory factors, which in turn delays the closure of diabetic wounds. In this study, a Janus membrane is constructed by combining glucose oxidase (GOx) and copper ions (Cu2+) for the treatment of diabetic wounds, which is named as Janus@GOx/Cu2+. It consists of hydrophobic, transitional, and superhydrophilic layers in a three-layer structure with gradient hydrophilicity for self-pumping properties. The Janus@GOx/Cu2+ membrane triggers a series of cascading reactions while pumping out diabetic wound exudates. First, glucose oxidase loaded onto the hydrophilic layer of the Janus@GOx/Cu2+ membrane decomposes glucose into hydrogen peroxide (H2O2) and glucuronic acid, reducing the local glucose level. The generated glucuronic acid neutralizes the local alkaline environment of chronic wounds. Simultaneously, the H2O2 interacts with the Cu2+ contained in the hydrophobic layers of the Janus@GOx/Cu2+ membrane via a Fenton-like reaction, generating hydroxyl radicals with excellent bactericidal properties. Cu2+ promotes angiogenesis and wound healing in diabetic wounds. Under the action of multiple responses, the Janus@GOx/Cu2+ membrane promotes wound healing in diabetic infections.

5.
Eur J Sport Sci ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106159

RESUMEN

This study aimed to verify the relationship between changes in thigh muscle-localized bioelectrical impedance analysis (ML-BIA) parameters and performance in a multiple-set exercise. The sample consisted of 30 female university students (22.1 ± 3.2 years). The ML-BIA parameters, including localized muscle resistance (ML-R), reactance (ML-Xc), and phase angle (ML-AngF), were evaluated using a tetrapolar bioelectric impedance device operating at a frequency of 50 KHz. The multiple sets protocol was performed with an isokinetic dynamometer. For body composition, total and leg lean soft tissue (LST) were evaluated using dual X-ray absortiometry. Student's t-test for paired samples was used to compare the ML-BIA parameters and thigh circumference pre and postexercise. Linear regression analysis was performed to verify the ∆ML-PhA as a predictor of peak torque for the three sets alone while controlling for total and leg LST. There were differences in the ML-R (∆ = 0.02 ± 1.45 Ω; p = 0.001; and E.S = 0.19), ML-Xc (∆ = 2.90 ± 4.12 Ω; p = 0.043; and E.S = 0.36), and thigh circumference (∆ = 0.82 ± 0.60 cm; p < 0.001; and E.S = 0.16) pre- and post-multiple sets. ΔML-PhA was a predictor of performance in the first set (p = 0.002), regardless of total and leg LST. However, the ΔML-PhA lost its explanatory power in the other sets (second and third), and the variables that best explained performance were total and leg LST. The ML-BIA (ML-R and ML-Xc) parameters were sensitive and changed after the multiple sets protocol, and the ΔML-PhA was a predictor of performance in the first set regardless of the total and leg LST.

6.
Small ; : e2403865, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107914

RESUMEN

Electrocatalytic nitrite (NO2 -) reduction to ammonia (NH3) is a promising method for reducing pollution and aiding industrial production. However, progress is limited by the lack of efficient selective catalysts and ambiguous catalytic mechanisms. This study explores the loading of PdCu alloy onto oxygen defective TiO2-x, resulting in a significant increase in NH3 yield (from 70.6 to 366.4 µmol cm-2 h-1 at -0.6 V vs reversible hydrogen electrode) by modulating localized electron density. In situ and operando studies illustrate that the reduction of NO2 - to NH3 involves gradual deoxygenation and hydrogenation. The process also demonstrated excellent selectivity and stability, with long-term durability in cycling and 50 h stability tests. Density functional theory (DFT) calculations elucidate that the introduction of PdCu alloys further amplified electron density at oxygen vacancies (Ovs). Additionally, the Ti─O bond is strengthened as the d-band center of the Ti 3d rising after PdCu loading, facilitating the adsorption and activation of *NO2. Moreover, the presence of Ovs and PdCu alloy lowers the energy barriers for deoxygenation and hydrogenation, leading to high yield and selectivity of NH3. This insight of controlling localized electron density offers valuable insights for advancing sustainable NH3 synthesis methods.

7.
Front Chem ; 12: 1439185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091277

RESUMEN

Oxidative dehydrogenation of propane (ODHP) is a reaction with significant practical significance. As for the industrial application of ODHP, it is challenging to achieve high activity and high propylene selectivity simultaneously. In this study, to overcome this obstacle, we designed a series of Cu/BN catalysts with unique morphologies for establishing a photothermal ODHP system with high efficiency and selectivity. Characterization and evaluation results revealed that Cu/BN-NS and Cu/BN-NF with enlarged specific surface areas exhibited higher catalytic activities. The localized surface plasmon resonance (LSPR) effect of Cu nanoparticles further enhanced the photothermal catalytic performances of Cu/BN catalysts under visible light irradiation. To the best of our knowledge, it is the first time to establish a BN-based photothermal ODHP catalytic system. This study is expected to pave pathways to realize high activity and propylene selectivity for the practical application of ODHP.

9.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120411

RESUMEN

As the driving source, highly efficient silicon-based light emission is urgently needed for the realization of optoelectronic integrated chips. Here, we report that enhanced green electroluminescence (EL) can be obtained from oxygen-doped silicon nitride (SiNx:O) films based on an ordered and tunable Ag nanocavity array with a high density by nanosphere lithography and laser irradiation. Compared with that of a pure SiNxO device, the green electroluminescence (EL) from the SiNx:O/Ag nanocavity array device can be increased by 7.1-fold. Moreover, the external quantum efficiency of the green electroluminescence (EL) is enhanced 3-fold for SiNx:O/Ag nanocavity arrays with diameters of 300 nm. The analysis of absorption spectra and the FDTD calculation reveal that the localized surface plasmon (LSP) resonance of size-controllable Ag nanocavity arrays and SiNx:O films play a key role in the strong green EL. Our discovery demonstrates that SiNx:O films coupled with tunable Ag nanocavity arrays are promising for silicon-based light-emitting diode devices of the AI period in the future.

10.
Appl Radiat Isot ; 212: 111463, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39121804

RESUMEN

Any experimental Thermoluminescent (TL) glow-peak contains the activation energy information of its corresponding energy level within the band gap in insulating materials. The theory of peak shape methods (PSM) correlates the macroscopic geometrical characteristics of a single TL peak with activation energy of the level responsible for the TL peak by assuming that the area under a TL peak can be approximated by the area of a triangle. In this way the geometrical characteristics becomes the measure of the activation energy. In the present work new PSM expressions are derived, which are not empirical as the existing ones but are based of the physical model of one trap one recombination (OTOR) center. Three cases are considered. (I) Delocalized OTOR for re-trapping probability smaller than the recombination probability. (II) Delocalized OTOR for re-trapping probability greater than recombination probability. (III) Localized transitions OTOR model. The system of differential equations of each case model were solved analytically using the Lambert W function (or equivalently the Wright ω function). Then the resulted analytical expressions of TL intensity as a function of temperature were used to derive new PSM. The new PSM from all cases are formally exactly the same, having, however, strong differentiation in their coefficients. The functionality of the new expressions is tested and its comparison with pre-existing PSM is performed.

11.
Cureus ; 16(7): e64181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119424

RESUMEN

Bortezomib (BAN) is a proteasome inhibitor approved for the treatment of multiple myeloma and lymphoma. Despite its efficacy in various tumor models, systemic administration can result in toxicity to healthy organs. The purpose of this study is to evaluate the elution profile of BAN from PMMA cement for the local treatment of orthopedic tumors. BAN solution (5 mg; 2 mg/mL) was mixed with Simplex cement (40 g, Stryker), followed by injection of cement into an antibiotic cement nail mold (13 mm) to coat a 10 mm titanium femoral nail (DePuy Synthes). Once the cement polymerized, the nail was cut into 2 cm segments for the BAN elution study. There is a sustained release of BAN for up to 28 days. The overall concentration of BAN released at each time point was between 74 and 263 ng/ml, which is compatible with the peak blood concentration of a single intravenous BAN injection. This study demonstrates the feasibility of using PMMA bone cement as a local BAN delivery tool, essential for future studies and treatment targeting multiple myeloma cells.

12.
JBMR Plus ; 8(9): ziae090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39119540

RESUMEN

Atypical femoral fracture (AFF) is generally a rare complication of long-term use of bisphosphonate (BP); glucocorticoid (GC) use and Asian race are also risk factors. Femoral localized periosteal thickening (LPT, also termed "beaking") of the lateral cortex often precedes AFF. This cohort study investigated the incidence of LPT and AFF and their clinical courses over 10 yr in patients with autoimmune inflammatory rheumatic diseases (AIRDs) treated with BP and GC. The study population consisted of 121 patients with AIRDs taking BP and GC. LPT was screened by X-ray, and the LPT shape was evaluated. Prednisolone (PSL) dose was 10 (8-12) mg/d at enrollment and 9 (6-10) mg/d at the last observation. LPT was evident in 10 patients at enrollment and increased linearly to 31 patients (26%) at the last observation. AFF occurred in 9 femurs of 5 patients with LPT. All patients with AFF had bilateral LPT, and the prevalence of pointed type and LPT height were higher in the AFF-positive group than in the AFF-negative group. AFF occurred before BP discontinuation in 2 patients, 1 yr after BP discontinuation in 1, after BP discontinuation followed by 7 yr of alfacalcidol use in 1, and after switching from alfacalcidol to denosumab in 1. The prevalence rates of AFF and LPT associated with long-term BP use with concomitant use of GC (mostly PSL ≥ 6 mg/d) in Japanese patients with AIRD increased over time. The selection of long-term osteoporosis treatment for LPT-positive patients is difficult in some cases.

13.
Sci Rep ; 14(1): 18288, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112559

RESUMEN

In this brief report, we present laser induced breakdown spectroscopy (LIBS) evidence of deuterium (D) production in a 3:1 urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) polymer doped with resonant gold nanorods, induced by intense, 40 fs laser pulses. The in situ recorded LIBS spectra revealed that the D/(2D + H) increased to 4-8% in the polymer samples in selected events. The extent of transmutation was found to linearly increase with the laser pulse energy (intensity) between 2 and 25 mJ (up to 3 × 1017W/cm2). The observed effect is attributed only to the field enhancing effects due to excited localized surface plasmons on the gold nanoparticles.

14.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124444

RESUMEN

Focusing on the bending wave characteristic of plate-shell structures, this paper derives the complex band curve of piezoelectric phononic crystal based on the equilibrium differential equation in the plane stress state using COMSOL PDE 6.2. To ascertain the computational model's accuracy, the computed complex band curve is then cross-validated against real band curves obtained through coupling simulations. Utilizing this model, this paper investigates the impact of structural and electrical parameters on the bandgap range and the attenuation coefficient in the bandgap. Results indicate that the larger surface areas of the piezoelectric sheet correspond to lower center bands in the bandgap, while increased thickness widens the attenuation coefficient range with increased peak values. Furthermore, the influence of inductance on the bandgap conforms to the variation law of the electrical LC resonance frequency, and increased resistance widens the attenuation coefficient range albeit with decreased peak values. The incorporation of negative capacitance significantly expands the low-frequency bandgap range. Visualized through vibration transfer simulations, the vibration-damping ability of the piezoelectric phononic crystal is demonstrated. Experimentally, this paper finds that two propagation modes of bending waves (symmetric and anti-symmetric) result in variable voltage amplitudes, and the average vibration of the system decreases by 4-5 dB within the range of 1710-1990 Hz. The comparison between experimental and model-generated data confirms the accuracy of the attenuation coefficient calculation model. This convergence between experimental and computational results emphasizes the validity and usefulness of the proposed model, and this paper provides theoretical support for the application of piezoelectric phononic crystals in the field of plate-shell vibration reduction.

15.
Small ; : e2405731, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136416

RESUMEN

Localized high-concentration electrolytes (LHCEs) have emerged as a promising class of electrolytes to improve the cycle life and energy density of lithium-ion batteries (LIBs). While their application in batteries with lithium-metal anodes is extensively investigated, their behavior in systems with graphite anodes has received less research attention. Herein, the behaviors of four electrolytes in Graphite | LiNiO2 cells are compared. By systematically varying the electrolyte compositions, the impacts of the solvation structure, solvent composition, and salt composition of LHCEs are identified on the rate capability, stability, and propensity for lithium plating in LIB full-cells. It is found that while the solvation structure and solvent composition each play an important role in determining rate capability, the substitution of LiPF6 salt with LiFSI maximizes the rate capability and suppresses irreversible lithium plating. It is now demonstrated via constant-potential cycling, that an appropriately formulated LHCE can, therefore, maintain high reversible capacity and safety under arbitrarily fast charging conditions.

16.
Cureus ; 16(7): e64605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39144867

RESUMEN

Leishmania and tularemia are infectious diseases that both can present with lymphadenopathy. Leishmania typically causes visceral or cutaneous forms, while tularemia can result in glandular tularemia characterized by lymphadenitis. We report a case of a patient presenting with localized cervical lymphadenopathy diagnosed with both leishmaniasis and tularemia. This case underscores the importance of considering both pathogenic agents in the differential diagnosis of localized lymphadenitis. Early treatment is crucial to prevent the dissemination of these infections.

17.
ACS Nano ; 18(32): 21347-21363, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39092933

RESUMEN

Understanding how colloidal soft materials interact with light is crucial to the rational design of optical metamaterials. Electromagnetic simulations are computationally expensive and have primarily been limited to model systems described by a small number of particles-dimers, small clusters, and small periodic unit cells of superlattices. In this work we study the optical properties of bulk, disordered materials comprising a large number of plasmonic colloidal nanoparticles using Brownian dynamics simulations and the mutual polarization method. We investigate the far-field and near-field optical properties of both colloidal fluids and gels, which require thousands of nanoparticles to describe statistically. We show that these disordered materials exhibit a distribution of particle-level plasmonic resonance frequencies that determines their ensemble optical response. Nanoparticles with similar resonant frequencies form anisotropic and oriented clusters embedded within the otherwise isotropic and disordered microstructures. These collectively resonating morphologies can be tuned with the frequency and polarization of incident light. Knowledge of particle resonant distributions may help to interpret and compare the optical responses of different colloidal structures, correlate and predict optical properties, and rationally design soft materials for applications harnessing light.

18.
ACS Nano ; 18(32): 21593-21606, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39093951

RESUMEN

Surface-enhanced Raman scattering (SERS) is an attractive technique in molecular detection with high sensitivity and label-free characteristics. However, its use in protein detection is limited by the large volume of proteins, hindering its approach to the narrow spaces of hotspots. In this study, we fabricated a Au nanoTriangle plate Array on Gel (AuTAG) as an SERS substrate by attaching a Au nanoTriangle plate (AuNT) arrangement on a thermoresponsive hydrogel surface. The AuTAG acts as an actively tunable plasmonic device, on which the interparticle distance is altered by controlling temperature via changes in hydrogel volume. Further, we designed a Gel Filter Trapping (GFT) method as an active protein delivery strategy based on the characteristics of hydrogels, which can absorb water and separate biopolymers through their three-dimensional (3D) polymer networks. On the AuTAGs, fabricated with AuNTs modified with charged surface ligands to prevent the nonspecific adsorption of analytes to particles, the GFT method helped the delivery of proteins to hotspot areas on the AuNT arrangement. This combination of a AuTAG substrate and the GFT method enables ultrahigh sensitivity for protein detection by SERS up to a single-molecule level as well as a wide quantification concentration range of 6 orders due to their geometric advantages.


Asunto(s)
Oro , Hidrogeles , Espectrometría Raman , Propiedades de Superficie , Oro/química , Hidrogeles/química , Nanopartículas del Metal/química , Proteínas/análisis , Proteínas/química , Tamaño de la Partícula , Humanos
19.
Artículo en Inglés | MEDLINE | ID: mdl-39143515

RESUMEN

Chemical interface damping (CID) is a recently proposed plasmon-damping pathway based on the interfacial hot-electron transfer from metal to adsorbate molecules. However, the in situ reversible tuning of CID in single gold nanorods (AuNRs) has remained a considerable challenge. In this study, we used total internal reflection scattering microscopy and spectroscopy to investigate the CID induced by p-aminoazobenzene (p-AAB), which has fast photoisomerization characteristics, attached to single AuNRs. We demonstrated the in situ reversible tuning of CID in single AuNRs by switching between ultraviolet (UV, 365 nm) and visible (vis, 465 nm) irradiation to induce photoresponsive structural conversions between the cis and trans forms of p-AAB in ethanol, leading to different lowest unoccupied molecular orbital (LUMO) energies for both forms. The localized surface plasmon resonance (LSPR) line width was wide under vis irradiation but narrow under UV irradiation, indicating that hot electrons are more efficiently transferred to trans-p-AAB with a low LUMO energy level. We further investigated the in situ photoreversible tuning of CID by manipulating supramolecular host-guest interactions between cucurbit[8]uril (CB[8]) and p-AAB in the single AuNRs. Additionally, real-time in situ reversible tuning of CID in single AuNRs was achieved through photonic switching of the cis-trans forms of p-AAB inside CB[8]. The LSPR line width was narrow under vis irradiation but gradually widened under UV irradiation before narrowing again upon returning to vis irradiation, unlike the case with p-AAB only. These results can be ascribed to the fact that cis-p-AAB completely encapsulated within CB[8] in water is thermodynamically more favorable than trans-p-AAB. Therefore, we have discovered a new strategy for tuning the CID by performing p-AAB photoisomerization and adjusting the wavelength of incident light in single AuNRs. In addition, this study demonstrates that CID can be effectively applied to the development of biosensors to detect guest molecules and their structural changes inside the cavity of CB[8] in single AuNRs.

20.
J Urol ; : 101097JU0000000000004163, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088398

RESUMEN

PURPOSE: Approximately 25% to 50% of patients with high-risk localized prostate cancer experience biochemical recurrence (BCR) within 2 years of radical prostatectomy. The Apa-RP study (NCT04523207) investigated whether adjuvant apalutamide plus androgen deprivation therapy (ADT) in high-risk patients who have undergone radical prostatectomy improved BCR-free survival. MATERIALS AND METHODS: Apa-RP was a multicenter, open-label, single-arm, phase 2 study conducted in community urology practices in the US. High-risk patients who had radical prostatectomy received 12 cycles of apalutamide (240 mg daily; 28-day cycles) plus ADT. The primary end point was BCR-free survival. Secondary end points included testosterone recovery (≥150 ng/dL) and safety. RESULTS: One hundred eight patients were enrolled; median age was 66.0 years (range 46.0-77.0 years). Median preoperative PSA and baseline testosterone were 7.6 ng/mL (range 2.2-62.7 ng/mL) and 340.0 ng/dL (range 43.0-939.0 ng/dL), respectively. The BCR-free rate at 24 months (12 months after completion of planned therapy) was 100% (90% CI 93-100). Serum testosterone recovery rate (≥50 and ≥150 ng/dL) 12 months after treatment completion was 96% (95% CI 88-98) and 77% (95% CI 66-85), respectively. Overall, 107 (99%) patients experienced treatment-emergent adverse events, with 24 (22%) experiencing grade 3 to 4 events. CONCLUSIONS: In Apa-RP, BCR-free survival was 100% with 77% of patients having testosterone recovery (≥150 ng/dL) within 12 months of actual treatment completion and a manageable safety profile. These results provide proof of concept that treatment intensification with 12 cycles of apalutamide plus ADT could become an option for patients with high-risk localized prostate cancer who have undergone radical prostatectomy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04523207.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...