Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 222: 115004, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516630

RESUMEN

Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysGE58V variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.


Asunto(s)
Técnicas Biosensibles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/química , Proteínas Bacterianas/genética , Dominios Proteicos , ADN/genética
2.
AMB Express ; 11(1): 66, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963930

RESUMEN

4-Hydroxyisoleucine (4-HIL) is a promising drug for treating diabetes. In our previous study, 4-HIL was synthesized from self-produced L-isoleucine (Ile) in Corynebacterium glutamicum by expressing an Ile dioxygenase gene. Although the 4-HIL production of recombinant strain SZ06 increased significantly, a by-product, L-lysine (Lys) was accumulated because of the share of the first several enzymes in Ile and Lys biosynthetic pathways. In this study, programming adaptive laboratory evolution (ALE) was designed and conducted in SZ06 to promote 4-HIL biosynthesis. At first, a programming evolutionary system pMK was constructed, which contains a Lys biosensor LysG-PlysE and an evolutionary actuator composed of a mutagenesis gene and a fluorescent protein gene. The evolutionary strain SZ06/pMK was then let to be evolved programmatically and spontaneously by sensing Lys concentration. After successive rounds of evolution, nine mutant strains K1 - K9 with significantly increased 4-HIL production and growth performance were obtained. The maximum 4-HIL titer was 152.19 ± 14.60 mM, 28.4% higher than that in SZ06. This titer was higher than those of all the metabolic engineered C. glutamicum strains ever constructed. The whole genome sequencing of the nine evolved strains revealed approximately 30 genetic mutations in each strain. Only one mutation was directly related to the Lys biosynthetic pathway. Therefore, programming ALE driven by Lys biosensor can be used as an effective strategy to increase 4-HIL production in C. glutamicum.

3.
ACS Synth Biol ; 8(2): 274-281, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30707564

RESUMEN

Pyruvate carboxylase is an anaplerotic carbon dioxide-fixing enzyme replenishing the tricarboxylic acid cycle with oxaloacetate during growth on sugars. In this study, we applied a lysine biosensor to identify pyruvate carboxylase variants in Corynebacterium glutamicum that enable improved l-lysine production from glucose. A suitable reporter strain was transformed with a pyc gene library created by error-prone PCR and screened by fluorescence-activated cell sorting (FACS) for cells with increased fluorescence triggered by an elevated cytoplasmic lysine concentration. Two pyruvate carboxylase variants, PCxT343A,I1012S and PCxT132A were identified allowing 9% and 19% increased lysine titers upon plasmid-based expression. Chromosomal expression of PCxT132A and PCxT343A variants led to 6% and 14% higher l-lysine levels. The new PCx variants can be useful also for other microbial strains producing TCA cycle-derived metabolites. Our approach indicates that a biosensor such as pSenLys enables directed evolution of many enzymes involved in converting a carbon source into the target metabolite.


Asunto(s)
Técnicas Biosensibles , Glucosa/metabolismo , Lisina/metabolismo , Piruvato Carboxilasa/metabolismo , Citometría de Flujo , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...