Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; : 101751, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39357524

RESUMEN

Although oncolytic adenoviruses are widely studied for their direct oncolytic activity and immunomodulatory role in cancer immunotherapy, the immunosuppressive feedback loop induced by oncolytic adenoviruses remains to be studied. Here, we demonstrate that type V adenovirus (ADV) induces the polarization of tumor-associated macrophages (TAMs) to the M2 phenotype and increases the infiltration of regulatory T cells (Tregs) in the tumor microenvironment (TME). By selectively compensating for these deficiencies, thymosin alpha 1 (Tα1) reprograms "M2-like" TAMs toward an antitumoral phenotype, thereby reprogramming the TME into a state more beneficial for antitumor immunity. Moreover, ADVTα1 is constructed by harnessing the merits of all the components for the aforementioned combinatorial therapy. Both exogenously supplied and adenovirus-produced Tα1 orchestrate TAM reprogramming and enhance the antitumor efficacy of ADV via CD8+ T cells, showing promising prospects for clinical translation. Our findings provide inspiration for improving oncolytic adenovirus combination therapy and designing oncolytic engineered adenoviruses.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39352454

RESUMEN

Dickkopf-1 (DKK1) is a secretory antagonist that can bind with the Wnt coreceptor to desensitize cells to canonical Wnt ligands. DKN-01 is a specific antibody targeting secreted DKK1, which has been investigated as a monotherapy or combination therapy for various malignant tumors, including gastric cancer (GC). Tumor-associated macrophages (TAMs) with high plasticity usually present M2 phenotype, which can promote tumor progression. The aim of this study was to investigate the effect of DKN-01 on macrophage polarization in GC and the underlying molecular mechanism. To ascertain the effect of DKN-01 on GC tumor growth, we established a tumor-bearing mouse model and found that DKN-01 treatment suppressed tumor growth efficiently. Through RNA-seq and pathway enrichment analysis, we identified that the differentially expressed genes after DKN-01 treatment are associated with tumor immune-related pathways. Macrophage polarization was assessed using immunohistochemistry and quantitative real-time polymerase chain reaction. DKN-01 and knockdown of DKK1 promoted M1 polarization and inhibited M2 polarization of macrophages, while DKK1 overexpression got the opposite results. Moreover, DKN-01 activated the cGAS/STING pathway, while the inactivation of cGAS-STING pathway using RU.521 reversed the inhibition of tumor growth in vivo and macrophage M2 polarization caused by DKN-01. This study reveals that DKN-01 suppresses GC tumor growth through activating cGAS-STING pathway to block macrophage M2 polarization.

3.
Int Immunopharmacol ; 142(Pt B): 113258, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39340991

RESUMEN

BACKGROUND AND PURPOSE: Renal transplantation and other conditions with transiently reduced blood flow is major cause of renal ischemia/reperfusion injury (RIRI), a therapeutic challenge clinically. This study investigated the role of liraglutide in ferroptosis-associated RIRI via macrophage extracellular traps (METs). METHODS: Animal model with RIRI was established in C57BL/6J mice. A total of 72 C57BL/6J mice were used with 8 mice per group. Primary tubular epithelium was co-culture with RAW264.7 under hypoxia/reoxygenation (H/R) condition to mimic in vitro. Liraglutide was administrated into mice and cells. Extracellular DNA, neutrophil elastase and myeloperoxidase in serum and supernatant of cell medium were collected for measuring METs. F4/80 and citH3 were labeled to show METs. RESULTS: Liraglutide relieved RIRI and ferroptosis in vivo, and inhibited renal I/R-induced METs both in vivo and in vitro. F4/80 and citrullinated histone H3 (citH3) were highly co-localized after RIRI. Liraglutide attenuated the co-localization of citH3 and F4/80. Expressions of M2 markers were enhanced whereas these of M1 markers suppressed during liraglutide treatment in RIRI. Phosphorylation of signal transducer and activator of transcription (STAT)1, 3 and 6 were increased in RIRI mice and H/R-induced RAW264.7. However, liraglutide decreased phosphorylation of STAT1 and increased phosphorylation of STAT3 and STAT6. STAT3/6 inhibition reversed liraglutide-inhibited M1 polarization, extracellular traps and ferroptosis. CONCLUSION: Liraglutide inhibited ferroptosis-induced renal dysfunction since it skewed macrophage polarization into M2 phenotype that interfered the formation of extracellular traps based on STAT3/6 pathway during RIRI. Liraglutide was proposed to be used for RIRI clinical treatment.

4.
Int J Biol Sci ; 20(11): 4341-4363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247822

RESUMEN

Macrophages are the most abundant alternative immune cells in the tumor microenvironment (TME). The cross-talk between macrophages and tumor cells provides an important shelter for the occurrence and development of tumors. As an important information transfer medium, exosomes play an important role in intercellular communication. Nonetheless, how exosomal lncRNAs coordinate the communication between tumor cells and immune cells in hepatocellular carcinoma (HCC) is incompletely understood. We found that HCC exosomes-derived antisense RNA of SLC16A1(SLC16A1-AS1) promoted the malignant progression of HCC by regulating macrophage M2-type polarization. Mechanistically, the HCC exosomal SLC16A1-AS1 enhanced mRNA stabilization of SLC16A1 in macrophage by promoting the interaction between 3' untranslated regions (3'UTR) of SLC16A1 mRNA and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). As a lactate transporter, SLC16A1 accelerated lactate influx and then activated c-Raf/ERK signaling to induce M2 polarization of macrophages. Reciprocally, M2 macrophages secreted IL-6 to activate STAT3 and then induce METTL3 transcription in HCC cells, which increasing m6A methylation and stabilization of SLC16A1-AS1. In turn, the reciprocal SLC16A1-AS1/IL-6 signaling between HCC cells and M2 macrophages promoted the proliferation, invasion and glycolysis of HCC cells. Our study highlights that exosomal SLC16A1-AS1 acts as a signaling message that induces lactate-mediated M2 polarization of macrophages, and implies that SLC16A1-AS1 might be an applicable target for therapeutic treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Exosomas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral
5.
Heliyon ; 10(17): e36517, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296099

RESUMEN

Introduction: Hepatocellular carcinoma (HCC) as the malignant cancers with high morbidity. The EMT of HCC has closely linked to the metastasis and recurrence. Moreover, tumor-associated macrophages (TAMs) can interact with HCC cells in the immune microenvironment; the M2 polarization of TAMs enhance the HCC cells EMT. The mechanism between HCC cells and TAMs is still unclear and our study was aimed to uncover it. Methods: We performed RT-qPCR and western to detach the RNA and protein expression. The relationship among has_circ_0000092, U2AF2, SMC1A and IL24 were revealed through mechanism experiments. Rescue assays were implemented to determine how circ_0000092 modulates M2 polarization of TAMs. Results: As detected by RT-qPCR, has_circ_0000092 was with high expression in HCC cells and could recruit U2AF2 to promote transcription of SMC1A. Moreover, circ_0000092 could control macrophage M2 polarization via promoting IL24 expression in HCC cells. Conclusion: To conclude, hsa_circ_0000092 can up-regulates IL24 by SMC1A to induce macrophages M2 polarization.

6.
Cell Biochem Biophys ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240442

RESUMEN

Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.

7.
Front Biosci (Landmark Ed) ; 29(9): 332, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39344332

RESUMEN

BACKGROUND: The polarization of macrophages plays a critical role in the immune response to infectious diseases, with M2 polarization shown to be particularly important in various pathological processes. However, the specific mechanisms of M2 macrophage polarization in Mycobacterium tuberculosis (Mtb) infection remain unclear. In particular, the roles of Granulin (GRN) and tumor necrosis factor receptor 2 (TNFR2) in the M2 polarization process have not been thoroughly studied. OBJECTIVE: To investigate the effect of macrophage M2 polarization on Mtb infection and the mechanism of GRN and TNFR2 in M2 polarization. METHODS: Forty patients with pulmonary tuberculosis (PTB) and 40 healthy volunteers were enrolled in this study, and peripheral blood samples were taken to detect the levels of TNFR2 and GRN mRNA by Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR); monocytes were isolated and then assessed by Flow Cytometry (FC) for M1 and M2 macrophage levels. To further validate the function of TNFR2 in macrophage polarization, we used interleukin 4 (IL-4) to induce mouse monocyte macrophages RAW264.7 to M2 polarized state. The expression of TNFR2 was detected by Western Blot and RT-qPCR. Next, we constructed a GRN knockdown plasmid and transfected it into IL-4-induced mouse monocyte macrophage RAW264.7, and detected the expression of TNFR2, M1 macrophage-associated factors tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6), and the M2 macrophage-associated factors CD206, IL-10, and Arginase 1 (Arg1); Immunofluorescence staining was used to monitor the expression of CD86+ and CD206+, and FC was used to analyze the macrophage phenotype. Subsequently, immunoprecipitation was used to detect the binding role of GRN and TNFR2. Finally, the effects of GRN and TNFR2 in macrophage polarization were further explored by knocking down GRN and simultaneously overexpressing TNFR2 and observing the macrophage polarization status. RESULTS: The results of the study showed elevated expression of TNFR2 and GRN and predominance of M2 type in macrophages in PTB patients compared to healthy volunteers (p < 0.05). Moreover, TNFR2 was highly expressed in M2 macrophages (p < 0.05). Additionally, GRN knockdown was followed by elevated expression of M1 polarization markers TNF-α, iNOS and IL-6 (p < 0.05), decreased levels of M2 polarization-associated factors CD206, IL-10 and Arg1 (p < 0.05), and macrophage polarization towards M1. Subsequently, we found that GRN binds to TNFR2 and that GRN upregulates TNFR2 expression (p < 0.05). In addition, knockdown of GRN elevated M1 polarization marker expression, decreased M2 polarization marker expression, and increased M1 macrophages and decreased M2 macrophages, whereas concurrent overexpression of TNFR2 decreased M1 polarization marker expression, elevated M2 polarization marker expression, and decreased M1 macrophages and increased M2 macrophages. CONCLUSION: TNFR2 and GRN are highly expressed in PTB patients and GRN promotes macrophage M2 polarization by upregulating TNFR2 expression.


Asunto(s)
Macrófagos , Mycobacterium tuberculosis , Progranulinas , Receptores Tipo II del Factor de Necrosis Tumoral , Humanos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Animales , Ratones , Mycobacterium tuberculosis/inmunología , Femenino , Adulto , Masculino , Progranulinas/metabolismo , Progranulinas/genética , Persona de Mediana Edad , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/microbiología , Células RAW 264.7 , Estudios de Casos y Controles , Activación de Macrófagos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética
8.
J Biochem Mol Toxicol ; 38(9): e23816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185902

RESUMEN

Reperfusion strategies, the standard therapy for acute myocardial infarction (AMI), may result in ischemia/reperfusion (I/R) damage. Suppressor of cytokine signaling1 (SOCS1) exerts a cardioprotective function in myocardial I/R damage. Here, we investigated epigenetic modulators that deregulate SOCS1 in cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Human AC16 cardiomyocytes were exposed to H/R conditions to generate a cell model of myocardial I/R damage. Expression of mRNA and protein was detected by quantitative PCR and western blot analysis, respectively. Cell migratory and invasive abilities were evaluated by transwell assay. Cell apoptosis and M2 macrophage polarization were assessed by flow cytometry. TNF-α, IL-1ß, and IL-6 levels were examined by ELISA. The interaction of KLF4 with SOCS1 was verified by chromatin immunoprecipitation and luciferase assays. SOCS1 and transcription factor KLF4 protein levels were underexpressed by 75% and 57%, respectively, in H/R-exposed AC16 cardiomyocytes versus control cells. Under H/R conditions, forced SOCS1 expression (2.7 times) induced cell migration (2.2 times) and invasion (1.9 times) and hindered cell apoptosis (by 45%) of AC16 cardiomyocytes as well as enhanced M2 macrophage polarization (4.6 times). Mechanistically, KLF4 upregulation promoted SOCS1 transcription (2.6 times) and expression (2.6 times) by binding to the SOCS1 promoter. Decrease of SOCS1 (by 51%) reversed the effects of KLF4 upregulation on cardiomyocyte migration, invasion and apoptosis, and M2 macrophage polarization under H/R conditions. Additionally, SOCS1 and KLF4 were underexpressed by 56% and 63%, respectively, in AMI serum. Our study indicates that KLF4-induced upregulation of SOCS1 can attenuate H/R-triggered apoptosis of AC16 cardiomyocytes and enhance M2 macrophage polarization.


Asunto(s)
Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Macrófagos , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Proteína 1 Supresora de la Señalización de Citocinas , Regulación hacia Arriba , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Macrófagos/metabolismo , Línea Celular , Apoptosis
9.
Int J Biol Macromol ; 279(Pt 1): 135080, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39187098

RESUMEN

Long non-coding RNA (lncRNA) LINC00958 has been reported to promote many gynecological cancers, but its detailed function in OC remains unclear. Cancer stem cells (CSCs) and tumor-associated macrophages (TAMs) have been reported to participate in the occurrence and metastasis of cancers. We want to explore the effects of exosomal LINC00958 on cell stemness and macrophage polarization in OC. LINC00958 expression was first verified in OC cells and its function on cell stemness was verified by subcellular fractionation analysis, sphere formation assay and so on. Exosomal LINC00958 was secreted from OC cells and the model of M2 macrophage polarization was established to further verify the impact of exosomal LINC00958 on the cell stemness and macrophage polarization of OC cells using several mechanism experiments including flow cytometry, RNA pulldown, luciferase reporter assays and so on. LINC00958 was up-regulated in OC cells and exosomal LINC00958 enhanced the stem cell-like properties of OC cells and M2 macrophage polarization. Furthermore, LINC00958 combined with glioma-associated oncogene homolog 1 (GLI1) to activate Hedgehog pathway, thereby promoting M2 polarization. Exosomal LINC00958 maintained OC cell stemness and induced M2 polarization via the Hedgehog signaling pathway.

10.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39204128

RESUMEN

Siraitia grosvenorii has anti-inflammatory, antioxidant, and immune-regulating effects, while macrophages play an important role in reducing inflammation. However, it is still unclear whether Siraitia grosvenorii extract (SGE) is effective in reducing inflammation by regulating macrophages. This study investigated the regulatory effect of SGE on macrophage polarization in a lipopolysaccharide (LPS)-induced intestinal inflammation model after establishing the model in vitro and in vivo. The results from the in vivo model showed that, compared with the LPS group, SGE significantly improved ileal morphology, restored the ileal mucosal barrier, and reduced intestinal and systemic inflammation by increasing CD206 and reducing iNOS proteins. In the in vitro model, compared with the LPS group, SGE significantly reduced the expression of iNOS protein and cytokines (TNF-α, IL-1ß, and IFN-γ) while significantly increasing the protein expression of CD206 in RAW264.7 cells. In conclusion, SGE can alleviate intestinal inflammation, protect the mucus barrier, and block the systemic immunosuppressive response by increasing M2 macrophages.

11.
World J Gastroenterol ; 30(30): 3625-3627, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193575

RESUMEN

In this issue of World Journal of Gastroenterology, Huang et al reported that Calculus bovis (CB), a traditional Chinese herbal medicine, impedes the growth of liver cancers in vivo. Through further in vitro studies, they showed that CB suppressed the M2 polarization of tumor-associated macrophages by suppressing the Wnt signaling pathway, which consequently inhibited the growth of liver cancer. Although the effects of traditional Chinese herbal medicine are often not scientifically proven, Huang et al successfully identified the molecular mechanism involved in the anticancer effect of CB, and it is anticipated that the molecular mechanisms involved in the effects of other traditional Chinese herbal medicines will be scientifically elucidated, as demonstrated in this article.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Vía de Señalización Wnt , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Vía de Señalización Wnt/efectos de los fármacos , Medicina Tradicional China/métodos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico
12.
Food Chem Toxicol ; 192: 114940, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151879

RESUMEN

Infertility caused by lipopolysaccharide (LPS) exposure due to infection is endangering male fertility worldwide, but the mechanism remains unclear. The blood-testis barrier (BTB) is essential for maintaining spermatogenesis and male fertility. In the present study, we showed that LPS (5.0 mg/kg) treatment markedly down-regulated the expression of BTB-related proteins, expanded the biotin penetration distance and caused histopathological injury in seminiferous tubules in mouse testes. Notably, testicular macrophage M1 polarization induced by LPS seems to be related to BTB damage, which was well confirmed by co-culture of RAW264.7 and TM4 cells in vitro. Interestingly, a low-dose LPS (0.1 mg/kg) pretreatment attenuated down-regulation of BTB-related proteins expression and histopathological injury and shorten biotin penetration distance in seminiferous tubules caused by LPS. Correspondingly, a low-dose LPS pretreatment suppresses testicular macrophage M1 polarization induced by LPS in mouse testes. Further experiments revealed that histone deacetylase 5 (HDAC5) was markedly down-regulated at 2 h and slightly down-regulated at 8 h, but up-regulated at 24 h in mouse testes after LPS treatment. Additionally, low-dose LPS pretreatment against the down-regulation of HDAC5 protein caused by LPS treatment. Notably, the suppressed testicular macrophage M1 polarization by low-dose LPS pretreatment was broken by BRD4354, a specific inhibitor of HDAC5 in vitro. These results suggest suppressed testicular macrophage M1 polarization by HDAC5 enforces insensitivity to LPS-elicited BTB damage.


Asunto(s)
Barrera Hematotesticular , Histona Desacetilasas , Lipopolisacáridos , Macrófagos , Animales , Masculino , Lipopolisacáridos/toxicidad , Barrera Hematotesticular/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Testículo/efectos de los fármacos , Testículo/metabolismo , Células RAW 264.7
13.
Am J Physiol Cell Physiol ; 327(2): C487-C504, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39010835

RESUMEN

Hypoxia is a critical factor contributing to a poor prognosis and challenging glioma therapy. Previous studies have indicated that hypoxia drives M2 polarization of macrophages and promotes cancer progression in various solid tumors. However, the more complex and diverse mechanisms underlying this process remain to be elucidated. Here, we aimed to examine the functions of hypoxia in gliomas and preliminarily investigate the underlying mechanisms of M2 macrophage polarization caused by hypoxia. We found that hypoxia significantly enhances the malignant phenotypes of U87 and U251 cells by regulating glycolysis. In addition, hypoxia mediated accumulation of the glycolysis product [lactic acid (LA)], which is subsequently absorbed by macrophages to induce its M2 polarization, and this process is reverted by both the glycolysis inhibitor and silenced monocarboxylate transporter (MCT-1) in macrophages, indicating that M2 macrophage polarization is associated with the promotion of glycolysis by hypoxia. Interestingly, we also found that hypoxia mediated LA accumulation in glioma cells upon uptake by macrophages upregulates H3K18La expression and promotes tumor necrosis factor superfamily member 9 (TNFSF9) expression in a histone-lactylation-dependent manner based on the results of chromatin immunoprecipitation sequencing (ChIP seq) enrichment analysis. Subsequent in vitro and in vivo experiments further indicated that TNFSF9 facilitated glioma progression. Mechanistically, hypoxia-mediated LA accumulation in glioma cells is taken up by macrophages and then induces its M2 macrophage polarization by regulating TNFSF9 expression via MCT-1/H3K18La signaling, thus facilitating the malignant progression of gliomas.NEW & NOTEWORTHY Our study revealed that hypoxia induces the production of LA accumulation through glycolysis in glioma cells, which is subsequently absorbed by macrophages and leads to its M2 polarization via the MCT-1/H3K18La/TNFSF9 axis, ultimately significantly promoting the malignant progression of glioma cells. These findings are novel and noteworthy as they provide insights into the connection between energy metabolism and epigenetics in gliomas.


Asunto(s)
Glioma , Histonas , Macrófagos , Glioma/patología , Glioma/metabolismo , Glioma/genética , Humanos , Animales , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Histonas/metabolismo , Línea Celular Tumoral , Glucólisis , Progresión de la Enfermedad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones Desnudos , Hipoxia de la Célula , Ácido Láctico/metabolismo , Regulación Neoplásica de la Expresión Génica , Activación de Macrófagos
14.
Int J Biol Macromol ; 275(Pt 1): 133484, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960224

RESUMEN

Spinal cord injury (SCI) represents a catastrophic neurological condition resulting in long-term loss of motor, autonomic, and sensory functions. Recently, ferroptosis, an iron-regulated form of cell death distinct from apoptosis, has emerged as a potential therapeutic target for SCI. In this study, we developed an injectable hydrogel composed of carboxymethyl cellulose (CMC), and quaternized chitosan (QCS), loaded with modified polydopamine nanoparticles (PDA NPs), referred to as CQP hydrogel. This hydrogel effectively scavenged reactive oxygen species (ROS), prevented the accumulation of Fe2+ and lipid peroxidation associated with ferroptosis, and restored mitochondrial functions in primary neuronal cells. When administered to animal models (rats) with SCI, the CQP hydrogels improved motor function by regulating iron homeostasis, inhibiting ferroptosis, and mitigating oxidative stress injury. Both in vitro and in vivo studies corroborated the capacity of CQP hydrogels to promote the shift from M1 to M2 polarization of microglia/macrophages. These findings suggest that CQP hydrogels, functioning as a localized iron-chelating system, have potential as biomaterials to enhance recovery from SCI by targeting ferroptosis and modulating anti-inflammatory macrophages activity.


Asunto(s)
Carboximetilcelulosa de Sodio , Quitosano , Ferroptosis , Hidrogeles , Indoles , Nanopartículas , Polímeros , Traumatismos de la Médula Espinal , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/farmacología , Quitosano/química , Quitosano/farmacología , Animales , Polímeros/química , Hidrogeles/química , Hidrogeles/farmacología , Nanopartículas/química , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Indoles/química , Indoles/farmacología , Ratas , Ferroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Hierro/química
15.
Regen Med ; 19(7-8): 379-391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072399

RESUMEN

Aim: To determine the mechanism of Calcitonin gene-related peptide (CGRP) in bone healing.Materials & methods: Alkaline phosphatase (ALP) activity and inflammatory-factor levels were detected using ELISA. Osteogenic differentiation was assessed using Alizarin red staining technique. The interaction between histone deacetylase 6 (HDAC6) and A-kinase anchoring protein 12 (AKAP12) was investigated through Co- immunoprecipitation.Results: CGRP treatment promoted rat bone marrow-derived macrophages (BMDMs) M2 polarization. CGRP facilitated osteogenic differentiation by enhancing M2 polarization of BMDMs. Mechanistically, CGRP promoted AKAP12 acetylation to activate the extracellular regulated protein kinases pathway by HDAC6 inhibition.Conclusion: CGRP promoted M2 polarization of rat BMDMs and facilitated osteogenic differentiation through the HDAC6/AKAP12/extracellular regulated protein kinases signaling pathway, thereby promoting bone healing.


[Box: see text].


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Péptido Relacionado con Gen de Calcitonina , Diferenciación Celular , Macrófagos , Osteogénesis , Transducción de Señal , Animales , Masculino , Ratas , Proteínas de Anclaje a la Quinasa A/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Histona Desacetilasa 6/metabolismo , Macrófagos/metabolismo , Macrófagos/citología , Ratas Sprague-Dawley
16.
Sci Rep ; 14(1): 16329, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009713

RESUMEN

Microplastics (MPs) are defined as plastic particles smaller than 5 mm in size, and nanoplastics (NPs) are those MPs with a particle size of less than 1000 nm or 100 nm. The prevalence of MPs in the environment and human tissues has raised concerns about their potential negative effects on human health. Macrophages are the major defence against foreign substances in the intestine, and can be polarized into two types: the M1 phenotype and the M2 phenotype. However, the effect of NPs on the polarization of macrophages remains unclear. Herein, we selected polystyrene, one of the most plastics in the environment and controlled the particle sizes at 50 nm and 500 nm respectively to study the effects on the polarization of macrophages. We used mouse RAW264.7 cell line models in this macrophage-associated study. Experiments on cell absorption showed that macrophages could quickly ingest polystyrene nanoplastics of both diameters with time-dependent uptake. Compared to the untreated group and 10 µg/mL treatment group, macrophages exposed to 50 µg/mL groups (50 nm and 500 nm) had considerably higher levels of CD86, iNOS, and TNF-α, but decreased levels of aCD206, IL-10, and Arg-1. According to these findings, macrophage M1 and M2 polarization can both be induced and inhibited by 50 µg/mL 50 nm and 500 nm polystyrene nanoplastics. This work provided the first evidence of a possible MPs mode of action with appropriate concentration and size through the production of polarized M1, providing dietary and environmental recommendations for people, particularly those with autoimmune and autoinflammatory illnesses.


Asunto(s)
Macrófagos , Microplásticos , Nanopartículas , Tamaño de la Partícula , Poliestirenos , Poliestirenos/química , Ratones , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Células RAW 264.7 , Nanopartículas/química , Inflamación/metabolismo
17.
J Med Virol ; 96(7): e29819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030992

RESUMEN

Pregnant women represent a high-risk population for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. The presence of SARS-CoV-2 has been reported in placenta from infected pregnant women, but whether the virus influences placenta immune response remains unclear. We investigated the properties of maternal-fetal interface macrophages (MFMs) in a cohort of unvaccinated women who contracted coronavirus disease 2019 (COVID-19) during their pregnancy. We reported an infiltration of CD163+ macrophages in placenta from COVID-19 women 19 whereas lymphoid compartment was not affected. Isolated MFMs exhibited nonpolarized activated signature (NOS2, IDO1, IFNG, TNF, TGFB) mainly in women infected during the second trimester of pregnancy. COVID-19 during pregnancy primed MFM to produce type I and III interferon response to SARS-CoV-2 (Wuhan and δ strains), that were unable to elicit this in MFMs from healthy pregnant women. COVID-19 also primed SARS-CoV-2 internalization by MFM in an angiotensin-converting enzyme 2-dependent manner. Activation and recall responses of MFMs were influenced by fetal sex. Collectively, these findings support a role for MFMs in the local immune response to SARS-CoV-2 infection, provide a basis for protective placental immunity in COVID-19, and highlight the interest of vaccination in pregnant women.


Asunto(s)
COVID-19 , Macrófagos , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Humanos , Femenino , Embarazo , COVID-19/inmunología , COVID-19/virología , Placenta/inmunología , Placenta/virología , Macrófagos/inmunología , Macrófagos/virología , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Internalización del Virus
18.
Bioeng Transl Med ; 9(4): e10646, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036078

RESUMEN

Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.

19.
Int Immunopharmacol ; 137: 112426, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38878491

RESUMEN

BACKGROUND: Azithromycin (AZM) has been proposed as a potential therapeutic drug in acute pulmonary injury due to its immunomodulatory and anti-inflammatory properties. However, its therapeutic mechanism remains not fully understood. METHODS: LPS was used to stimulate MLE-12 cells and RAW264.7 macrophages. Analyses of viability and apoptosis were performed by CCK-8 assay and flow cytometry, respectively. Protein analysis was performed by immunoblotting, and mRNA expression was tested by quantitative PCR. The secretion levels of TNF-α and IL-6 were detected by ELISA. MDA, GSH, ROS and Fe2+ contents were analyzed using assay kits. RESULTS: Administration of AZM or depletion of methyltransferase-like 3 (Mettl3) could attenuate LPS-triggered apoptosis, inflammation and ferroptosis in MLE-12 alveolar cells, as well as enhance M2 polarization of LPS-stimulated RAW264.7 macrophages. In LPS-exposed MLE-12 and RAW264.7 cells, AZM reduced Mettl3 protein expression and inactivated the NF-κB signaling through downregulation of Mettl3. Furthermore, Mettl3 restoration abated AZM-mediated anti-apoptosis, anti-inflammation and anti-ferroptosis effects in LPS-exposed MLE-12 cells and reversed AZM-mediated M2 polarization enhancement of LPS-exposed RAW264.7 macrophages. CONCLUSION: Our study indicates that AZM can promote M2 polarization of LPS-exposed RAW264.7 macrophages and attenuate LPS-triggered injury of MLE-12 alveolar cells by inactivating the Mettl3-mediated NF-κB pathway.


Asunto(s)
Apoptosis , Azitromicina , Lipopolisacáridos , Metiltransferasas , FN-kappa B , Transducción de Señal , Animales , Ratones , Metiltransferasas/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Azitromicina/farmacología , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Línea Celular
20.
Int J Biol Sci ; 20(8): 2814-2832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904028

RESUMEN

Stable infiltration of myeloid cells, especially tumor-associated M2 macrophages, acts as one of the essential features of the tumor immune microenvironment by promoting the malignant progression of hepatocellular carcinoma (HCC). However, the factors affecting the infiltration of M2 macrophages are not fully understood. In this study, we found the molecular subtypes of HCC with the worst prognosis are characterized by immune disorders dominated by myeloid cell infiltration. Myeloid cell nuclear differentiation antigen (MNDA) was significantly elevated in the most aggressive subtype and exhibited a positively correlation with M2 infiltration and HCC metastasis. Moreover, MNDA functioned as an independent prognostic predictor and has a good synergistic effect with some existing prognostic clinical indicators. We further confirmed that MNDA was primarily expressed in tumor M2 macrophages and contributed to the enhancement of its polarization by upregulating the expression of the M2 polarization enhancers. Furthermore, MNDA could drive the secretion of M2 macrophage-derived pro-metastasis proteins to accelerate HCC cells metastasis both in vivo and in vitro. In summary, MNDA exerts a protumor role by promoting M2 macrophages polarization and HCC metastasis, and can serve as a potential biomarker and therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Macrófagos , Células Mieloides , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animales , Línea Celular Tumoral , Ratones , Masculino , Microambiente Tumoral , Femenino , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...