RESUMEN
Introduction: Adoptive cell therapy using TCR-engineered T-cells is one of the most effective strategies against tumor cells. The TCR T-cell approach has been well tested against a variety of blood neoplasms but is yet to be deeply tested against solid tumors. Among solid tumors, cancer-testis antigens are the most prominent targets for tumor-specific therapy, as they are usually found on cells that lie behind blood-tissue barriers. Methods: We have employed a novel efficient protocol for MAGE-A3-specific T-cell clonal expansion, performed single-cell multi-omic analysis of the expanded T-cells via BD Rhapsody, engineered a selected T-cell receptor into a lentiviral construct, and tested it in an in vitro LDH-cytotoxicity test. Results and discussion: We have observed a 191-fold increase in the MAGE-A3-specific T-cell abundance, obtained a dominant T-cell receptor via single-cell multi-omic BD Rhapsody data analysis in the TCRscape bioinformatics tool, and observed potent cytotoxicity of the dominant-clonotype transduced TCR T-cells against a MAGE-A3-positive tumor. We have demonstrated the efficiency of our T-cell enrichment protocol in obtaining potent anti-tumor T-cells and their T-cell receptors, especially when paired with the modern single-cell analysis methods.
Asunto(s)
Antígenos de Neoplasias , Células Dendríticas , Inmunoterapia Adoptiva , Proteínas de Neoplasias , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Antígenos de Neoplasias/inmunología , Humanos , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de la Célula Individual/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Células Clonales , Proliferación Celular , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Citotoxicidad Inmunológica , MultiómicaRESUMEN
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
RESUMEN
Interleukin-10 (IL-10) is a highly pleiotropic cytokine that regulates immunological homeostasis through anti-inflammatory and/or immunostimulatory functions. Moreover, IL-10 is well known to exert diverse roles in tumor immunology and immunotherapy. The present study investigated the presence of circulating tumor antigen-specific IL-10-producing T cells in patients with head and neck squamous cell carcinoma (HNSCC), and determined factors that may influence the immunodynamics of IL-10-producing T cells. In vitro, peripheral blood mononuclear cells (PBMCs) stimulated with the tumor antigens p53 and MAGE-A4 were evaluated for interferon (IFN)-γ/IL-10 production using the IFN-γ/IL-10 double-color enzyme-linked immunosorbent spot assay. The proportion of T cells expressing immune checkpoint molecules in PBMCs was analyzed using flow cytometry. Of the 18 patients with HNSCC, 2 (11.1%) and 9 (50.0%) exhibited p53-specific IFN-γ and IL-10 production, respectively. Meanwhile, MAGE-A4-specific IFN-γ and IL-10 production was detected in 4 (28.6%) and 7 (50.0%) of 14 patients. In the p53-specific responses, IL-10-producing T cells were observed in significantly more patients than IFN-γ producing T cells (P=0.0275). In both CD4+ and CD8+ T cells, the proportion of T cells expressing lymphocyte activation gene-3 (Lag-3) was significantly lower in patients with p53-specific IL-10 production than in those without. In certain patients, Lag-3 blockade enhanced tumor antigen-specific IL-10. Taken together, the present study successfully demonstrated that tumor antigen-specific IL-10-producing T cells exist in the peripheral blood of patients with HNSCC and that Lag-3+ T cells may serve an important role in modulating IL-10-producing T cells. These findings provide novel insights into the roles of IL-10 and Lag-3 in mediating antitumor immune responses.
RESUMEN
T cell receptor (TCR) T cell therapies target tumor antigens in a human leukocyte antigen (HLA)-restricted manner. Biomarker-defined therapies require validation of assays suitable for determination of patient eligibility. For clinical trials evaluating TCR T cell therapies targeting melanoma-associated antigen A4 (MAGE-A4), screening in studies NCT02636855 and NCT04044768 assesses patient eligibility based on: (1) high-resolution HLA typing and (2) tumor MAGE-A4 testing via an immunohistochemical assay in HLA-eligible patients. The HLA/MAGE-A4 assays validation, biomarker data, and their relationship to covariates (demographics, cancer type, histopathology, tissue location) are reported here. HLA-A∗02 eligibility was 44.8% (2,959/6,606) in patients from 43 sites across North America and Europe. While HLA-A∗02:01 was the most frequent HLA-A∗02 allele, others (A∗02:02, A∗02:03, A∗02:06) considerably increased HLA eligibility in Hispanic, Black, and Asian populations. Overall, MAGE-A4 prevalence based on clinical trial enrollment was 26% (447/1,750) across 10 solid tumor types, and was highest in synovial sarcoma (70%) and lowest in gastric cancer (9%). The covariates were generally not associated with MAGE-A4 expression, except for patient age in ovarian cancer and histology in non-small cell lung cancer. This report shows the eligibility rate from biomarker screening for TCR T cell therapies and provides epidemiological data for future clinical development of MAGE-A4-targeted therapies.
RESUMEN
Gastric cancer poses a serious threat to human health and affects the digestive system. The lack of early symptoms and a dearth of effective identification methods make diagnosis difficult, with many patients only receiving a definitive diagnosis at a malignant stage, causing them to miss out on optimal therapeutic interventions. Melanoma-associated antigen-A (MAGE-A) is part of the MAGE family and falls under the cancer/testis antigen (CTA) category. The MAGE-A subfamily plays a significant role in tumorigenesis, proliferation and migration. The expression, prognosis and function of MAGE-A family members in GC, however, remain unclear. Our research and screening have shown that MAGE-A11 was highly expressed in GC tissues and was associated with poor patient prognosis. Additionally, MAGE-A11 functioned as an independent prognostic factor in GC through Cox regression analysis, and its expression showed significant correlation with both tumour immune cell infiltration and responsiveness to immunotherapy. Our data further indicated that MAGE-A11 regulated GC cell proliferation and migration. Subsequently, our findings propose that MAGE-A11 may operate as a prognostic factor, having potential as an immunotherapy target for GC.
Asunto(s)
Proteínas de Neoplasias , Neoplasias Gástricas , Masculino , Humanos , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias/metabolismo , Pronóstico , Neoplasias Gástricas/patología , Inmunoterapia , BiomarcadoresRESUMEN
Despite the revolutionary success of chimeric antigen receptor (CAR)-T therapy for hematological malignancies, successful CAR-T therapies for solid tumors remain limited. One major obstacle is the scarcity of tumor-specific cell-surface molecules. One potential solution to overcome this barrier is to utilize antibodies that recognize peptide/major histocompatibility complex (MHCs) in a T cell receptor (TCR)-like fashion, allowing CAR-T cells to recognize intracellular tumor antigens. This study reports a highly specific single-chain variable fragment (scFv) antibody against the MAGE-A4p230-239/human leukocyte antigen (HLA)-A∗02:01 complex (MAGE-A4 pMHC), screened from a human scFv phage display library. Indeed, retroviral vectors encoding CAR, utilizing this scFv antibody as a recognition component, efficiently recognized and lysed MAGA-A4+ tumor cells in an HLA-A∗02:01-restricted manner. Additionally, the adoptive transfer of T cells modified by the CAR-containing glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related receptor (GITR) intracellular domain (ICD), but not CD28 or 4-1BB ICD, significantly suppressed the growth of MAGE-A4+ HLA-A∗02:01+ tumors in an immunocompromised mouse model. Of note, a comprehensive analysis revealed that a broad range of amino acid sequences of the MAGE-A4p230-239 peptide were critical for the recognition of MAGE-A4 pMHC by these CAR-T cells, and no cross-reactivity to analogous peptides was observed. Thus, MAGE-A4-targeted CAR-T therapy using this scFv antibody may be a promising and safe treatment for solid tumors.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Ratones , Animales , Humanos , Anticuerpos de Cadena Única/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Antígenos HLA-A , Inmunoterapia AdoptivaRESUMEN
OBJECTIVE: The objective was to evaluate the expression of the MAGE A subtypes family in the central lung tumor patients from the forceps biopsy (FB) and bronchoalveolar lavage (BAL) specimens and to analyze its association with the histopathological examination. METHODS: An observational study was conducted on 32 FB and 43 BAL specimens from patients with central lung tumors. All samples were assessed for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression by reverse transcription (RT) polymerase chain reaction (PCR) and samples showing a positive result were examined for MAGE A subtypes family expression by nested-RT PCR. RESULT: The MAGE A1 to MAGE A10 genes were highly expressed in the FB and BAL specimens from patients with central lung tumors. The MAGE A1 to MAGE A10 gene and MAGE A1 to MAGE A6 gene were expressed in 60/75 (80%) and 16/75 (21.3 %), respectively. MAGE A8, MAGE A9, and MAGE A10 were the most commonly expressed. In FB specimens diagnosed without malignant cells, MAGE A1 to MAGE A10 and MAGE A1 to MAGE A6 were positive in 16/18 (88.9 %) and 1/18 (5.6 %), respectively. In all BAL specimens were diagnosed with no malignant cells, but MAGE A1 to MAGE A10 and MAGE A1 to MAGE A6 showed positive results in 36/43 (83.7%) and 9/43 (20.9%) %), respectively. There was a significant association between MAGE A1 to MAGE A6 expression with histopathological diagnosis. CONCLUSION: The MAGE A subtype family genes are highly expressed in central lung tumor patients from FB and BAL specimens, even in specimens that were diagnosed with no malignant cells. All BAL specimens were diagnosed as no malignant cells, but expression of the MAGE A subfamily genes was found in more than 80% of the specimens. These observations suggest that combining histopathological and molecular examination could improve the diagnosis of lung malignancy.
Asunto(s)
Antígenos de Neoplasias , Bencenoacetamidas , Neoplasias Pulmonares , Antígenos Específicos del Melanoma , Humanos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biopsia , Lavado Broncoalveolar , Neoplasias Pulmonares/patología , Instrumentos Quirúrgicos , Antígenos Específicos del Melanoma/metabolismoRESUMEN
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/química , Linfocitos T CD8-positivos , Epítopos/metabolismo , Nanopartículas/químicaRESUMEN
BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response. In this study, we investigated the potential of using DCs loaded with the MAGE-A2 long peptide to activate T cell cytotoxicity toward PCa cell lines. METHODS: Here, we generated DCs from monocytes and thoroughly characterized their phenotypic and functional properties. Then, DCs were pulsed with MAGE-A2 long peptide (LP) as an antigen source, and monitored for their transition from immature to mature DCs by assessing the expression levels of several costimulatory and maturation molecules like CD14, HLA-DR, CD40, CD11c, CD80, CD83, CD86, and CCR7. Furthermore, the ability of MAGE-A2 -LP pulsed DCs to stimulate T cell proliferation in a mixed lymphocyte reaction (MLR) setting and induction of cytotoxic T cells (CTLs) in coculture with autologous T cells were examined. Finally, CTLs were evaluated for their capacity to produce interferon-gamma (IFN-γ) and kill PCa cell lines (PC3 and LNCaP). RESULTS: The results demonstrated that the antigen-pulsed DCs exhibited a strong ability to stimulate the expansion of T cells. Moreover, the induced CTLs displayed substantial cytotoxicity against the target cells and exhibited increased IFN-γ production during activation compared to the controls. CONCLUSIONS: Overall, this innovative approach proved efficacious in targeting PCa cell lines, showcasing its potential as a foundation for the development and improved PCa cancer immunotherapy.
RESUMEN
Ovarian cancer has a dismal prognosis. Standard treatment following surgery relies on platinum-based chemotherapy. However, sizeable percentages of patients are unresponsive. Identification of markers predicting the response to chemotherapy might help select eligible patients and spare non-responding patients from treatment-associated toxicity. Cancer/testis antigens (CTAs) are expressed by healthy germ cells and malignant cells of diverse histological origin. This expression profile identifies them as attractive targets for cancer immunotherapies. We analyzed the correlations between expression of MAGE-A10 and New York esophageal-1 cancer (NY-ESO-1) CTAs at the protein level and the effectiveness of platinum-based chemotherapy in patients with advanced-stage high-grade serous ovarian carcinoma (HGSOC). MAGE-A10 and NY-ESO-1 protein expression was analyzed by immunohistochemistry (IHC) in formalin-fixed, paraffin-embedded samples from 93 patients with advanced-stage HGSOC treated at our institutions between January 1996 and December 2013. The correlation between the expression of these markers and response to platinum-based chemotherapy, evaluated according to RECIST 1.1 criteria and platinum sensitivity, measured as platinum-free interval (PFI), progression free (PFS), and overall survival (OS) was explored. The MAGE-A10 protein expression predicted unresponsiveness to platinum-based chemotherapy (p = 0.005), poor platinum sensitivity (p < 0.001), poor PFS (p < 0.001), and OS (p < 0.001). Multivariate analysis identified MAGE-A10 protein expression as an independent predictor of poor platinum sensitivity (p = 0.005) and shorter OS (p < 0.001). Instead, no correlation was observed between the NY-ESO-1 protein expression and response to platinum-based chemotherapy (p = 0.832), platinum sensitivity (p = 0.168), PFS (p = 0.126), and OS (p = 0.335). The MAGE-A10 protein expression reliably identified advanced-stage HGSOC unresponsive to platinum-based chemotherapy. Targeted immunotherapy could represent an important alternative therapeutic option in these cancers.
RESUMEN
TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Neoplasias/metabolismo , Inmunoterapia Adoptiva , Citotoxicidad Inmunológica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismoRESUMEN
BACKGROUND: The cancer-testis protein melanoma antigen A3 (MAGE-A3) is highly expressed in a broad range of malignant tumor forms. It has been confirmed that affibody molecules, a novel family of small (â¼6.5 kDa) targeting proteins, are useful agents for molecular imaging and targeted tumor treatment. As a novel agent for in vivo molecular imaging detection of MAGE-A3-positive tumors, the efficacy of affibody molecules was assessed in this research. METHODS: In this study, three cycles of phage display library screening resulted in the isolation of two new affibody molecules (ZMAGE-A3:172 and ZMAGE-A3:770) that attach to MAGE-A3. These molecules were then expressed in bacteria and purified. The affibody molecules with high affinity and specificity were evaluated using western blotting, immunohistochemistry, indirect immunofluorescence, surface plasmon resonance, and near-infrared optical imaging of tumor-bearing nude mice. RESULTS: The selected ZMAGE-A3 affibodies can precisely bind to the MAGE-A3 protein in living cells and display high-affinity binding to the MAGE-A3 protein at the molecular level. Furthermore, the accumulation of DyLight755-labeled ZMAGE-A3:172 or ZMAGE-A3:770 in MAGE-A3-positive tumors was achieved as early as 30 min and disappeared at 48 h post-injection. CONCLUSION: Our findings support the potential of the two MAGE-A3 protein-binding affibody molecules for their use as molecular imaging agents.
RESUMEN
Background: Advanced non-small cell lung cancer (NSCLC) is the most common type of lung cancer with poor prognosis. Adoptive cell therapy using engineered T-cell receptors (TCRs) targeting cancer-testis antigens, such as Melanoma-associated antigen 3 (MAGE-A3), is a potential approach for the treatment of NSCLC. However, systematic analysis of T cell immune responses to MAGE-A3 antigen and corresponding antigen-specific TCR is still lacking. Methods: In this study, we comprehensively screened HLA-A2 restricted MAGE-A3 tumor epitopes and characterized the corresponding TCRs using in vitro artificial antigen presentation cells (APC) system, single-cell transcriptome and TCR V(D)J sequencing, and machine-learning. Furthermore, the tumor-reactive TCRs with killing potency was screened and verified. Results: We identified the HLA-A2 restricted T cell epitopes from MAGE-A3 that could effectively induce the activation and cytotoxicity of CD8+ T cells using artificial APC in vitro. A cohort of HLA-A2+ NSCLC donors demonstrated that the number of epitope specific CD8+ T cells increased in NSCLC than healthy controls when measured with tetramer derived from the candidate MAGE-A3 epitopes, especially epitope Mp4 (MAGE-A3: 160-169, LVFGIELMEV). Statistical and machine-learning based analyses demonstrated that the MAGE-A3-Mp4 epitope-specific CD8+ T cell clones were mostly in effector and proliferating state. Importantly, T cells artificially expressing the MAGE-A3-Mp4 specific TCRs exhibited strong MAGE-A3+ tumor cell recognition and killing effect. Cross-reactivity risk analysis of the candidates TCRs showed high binding stability to MAGE-A3-Mp4 epitope and low risk of cross-reaction. Conclusions: This work identified candidate TCRs potentially suitable for TCR-T design targeting HLA-A2 restricted MAGE-A3 tumor antigen.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Antígeno HLA-A2 , Epítopos , Receptores de Antígenos de Linfocitos T , Antígenos de NeoplasiasRESUMEN
OBJECTIVE: The objective was to evaluate the expression of melanoma antigen (MAGE) A from A1 to 10 (A1-10) and the individual MAGE A family in the peripheral lung tumors and to analyze its association with histopathological findings. METHODS: A cross-sectional study was conducted on 67 samples of peripheral lung tumor obtained by core biopsies from patients with clinical diagnoses such as lung and mediastinal tumors. The specimens were divided into two, one to perform histopathological diagnosis and the last for mRNA MAGE A examination. A Nested polymerase chain reaction (PCR) was performed using universal primer, MF10/MR10 and MF10/MR12. The collected data were analyzed by appropriate statistical techniques. RESULT: The histopathological finding showed 41 (61.2 %) of specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells. MAGE A1-10 was expressed at 47 (70.1 %) and MAGE A1-6 was expressed at 25 (37.3 %) of specimens. In a malignant cell, MAGE A1-10 and MAGE A1-6 were expressed at 33 (80.5 %) and 19 (46.3 %), respectively. In non-malignant cells, MAGE A1-10 and MAGE A1-6 were expressed at 14 (53.9 %) and 6 (23.1 %,) respectively. The MAGE A1-10 and MAGE A8 expressions were significantly associated with histopathological findings of malignant or non-malignant cells. The sensitivity, specificity, and diagnostic accuracy of MAGE A1-10 were 80.5 %, 46.2 %, and 67.2 %, respectively; while for MAGE A8 were 41.5 %, 88.5 %, and 59.7 %, respectively. CONCLUSION: The MAGE A1-10 expression was the most commonly detected and associated with the histopathological finding. Moreover, it was more sensitive and specific and had higher diagnostic accuracy than others. Therefore, the MAGE A1-10 assay may improve the accuracy of the diagnosis of malignancy in peripheral lung tumors.
Asunto(s)
Antígenos de Neoplasias , Neoplasias Pulmonares , Humanos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Estudios Transversales , Neoplasias Pulmonares/patología , Antígenos Específicos del Melanoma/genéticaRESUMEN
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas de ADN , Ratones , Animales , Ratones Endogámicos C57BL , Antígenos de Neoplasias , Adyuvantes Inmunológicos , Inmunidad CelularRESUMEN
Early efforts to identify tumor-associated antigens over the last decade have provided unique cancer epitopes for targeted cancer therapy. MAGE-A proteins are a subclass of cancer/testis (CT) antigens that are presented on the cell surface by MHC class I molecules as an immune-privileged site. This is due to their restricted expression to germline cells and a wide range of cancers, where they are associated with resistance to chemotherapy, metastasis, and cancer cells with an increasing potential for survival. This makes them an appealing candidate target for designing an effective and specific immunotherapy, thereby suggesting that targeting oncogenic MAGE-As with cancer vaccination, adoptive T-cell transfer, or a combination of therapies would be promising. In this review, we summarize and discuss previous and ongoing (pre-)clinical studies that target these antigens, while bearing in mind the benefits and drawbacks of various therapeutic strategies, in order to speculate on future directions for MAGE-A-specific immunotherapies.
RESUMEN
Vaccines based on tumour-specific antigens are a promising approach for immunotherapy. However, the clinical efficacy of tumour-specific antigens is still challenging. Twelve conjugates with self-assembly properties were designed and synthesized using MAGE-A1 peptide and TLR2 agonist, combined with different covalent bonds. All the developed conjugates formed spherical nanoparticles with a diameter of approximately 150 nm, and enhanced the efficacy of the peptide vaccines with the better targeting of lymph nodes. All the conjugates could well bind to serum albumin and improve the plasma stability of the individual antigenic peptides. In particular, conjugate 6 (N-Ac PamCS-M-6) had a more significant ability to promote dendritic cell maturation, CD8+ T cell activation, and subsequent killing of tumour cells, with an in vivo tumour inhibition rate of 70 ± 2.9%. The interaction between specific response and the different conjugation modes was further explored, thereby providing a fundamental basis for novel immune anti-tumour molecular platforms.
Asunto(s)
Neoplasias de la Mama , Vacunas contra el Cáncer , Vacunas , Humanos , Femenino , Linfocitos T CD8-positivos , Receptor Toll-Like 2/metabolismo , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Inmunoterapia , Antígenos/metabolismo , Péptidos , Células DendríticasRESUMEN
Tumor plasticity is essential for adaptation to changing environmental conditions, in particular during the process of metastasis. In this study, we compared morphological and biochemical differences between LAN-1 neuroblastoma (NB) cells recovered from a subcutaneous xenograft primary tumor (PT) and the corresponding three generations of bone metastasis (BM I-III). Moreover, growth behavior, as well as the response to chemotherapy and immune cells were assessed. For this purpose, F-actin was stained, mRNA and protein expression assessed, and lactate secretion analyzed. Further, we measured adhesion to collagen I, the growth rate of spheroids in the presence and absence of vincristine, and the production of IL-6 by peripheral blood mononuclear cells (PBMCs) co-incubated with PT or BM I-III. Analysis of PT and the three BM generations revealed that their growth rate decreased from PT to BM III, and accordingly, PT cells reacted most sensitively to vincristine. In addition, morphology, adaption to hypoxic conditions, as well as transcriptomes showed strong differences between the cell lines. Moreover, BM I and BM II cells exhibited a significantly different ability to stimulate human immune cells compared to PT and BM III cells. Interestingly, the differences in immune cell stimulation corresponded to the expression level of the cancer-testis antigen MAGE-A3. In conclusion, our ex vivo model allows to analyze the adaption of tumor populations to different microenvironments and clearly demonstrates the strong alteration of tumor cell populations during this process.
RESUMEN
BACKGROUNDS AND AIMS: Prostate cancer is the most common malignant cancer among men and is the second deadliest cancer in men after lung cancer. Understanding the molecular mechanisms involved in development and progression of prostate cancer is essential to improve both diagnostic and therapeutic strategies in this regard. In addition, using novel gene therapy-based methods for treatment of cancers has gotten increasing attention during the recent years. Accordingly, this study was aimed to evaluate the inhibitory effect of MAGE-A11 gene, as an important oncogene involved in the pathophysiology of prostate cancer invitro model. The study was also aimed to evaluate the downstream genes related to MAGE-A11. MATERIALS AND METHODS: First, MAGE-A11 gene was knocked out in PC-3 cell line using "Clustered regularly interspaced short palindromic repeats" (CRISPR)/ "CRISPR-associated genes 9" (CRISPR/Cas9) method. Next, the expression levels of MAGE-A11, survivin and Ribonucleotide Reductase Small Subunit M2 (RRM2) genes were determined by quantitative polymerase chain reaction (qPCR) technique. The levels of proliferation and apoptosis were also analyzed in PC-3 cells using CCK-8 and Annexin V-PE/7-AAD assays. RESULTS: The results showed that the disruption of MAGE-A11 by CRISPR/Cas9 method significantly decreased proliferation (P< 0.0001) and enhanced apoptosis (P< 0.05) in PC-3 cells compared to control group. Moreover, the disruption of MAGE-A11 significantly down regulated the expression levels of survivin and RRM2 genes (P< 0.05). CONCLUSION: Our results demonstrated that knocking out MAGE-11 gene by CRISPR/CAS9 technique could efficiently inhibit cell proliferation and induce apoptosis in PC3 cells. Survivin and RRM2 genes might also participated in these processes.
Asunto(s)
Antígenos de Neoplasias , Sistemas CRISPR-Cas , Neoplasias de la Próstata , Humanos , Masculino , Apoptosis/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Survivin/genética , Antígenos de Neoplasias/genéticaRESUMEN
Bladder cancer is recognized as one of the top ten most common cancers worldwide. Activation of oncogenes, inactivation of tumor suppressor genes, and dysregulation of androgen signaling pathways are three major pathophysiological causes in the development of bladder tumors. Discovering potential biomarkers is required for the management and immunotherapy of bladder cancer. Melanoma-associated antigen (MAGE)-A6 and MAGE-A11 are two cancer-testis antigens that are potential coregulators of androgen receptors. MicroRNAs, especially miR-34a and miR-125b are two important tumor suppressors that play a critical role in regulating different signaling pathways and inhibiting tumor development. Twenty-nine surgical tissue biopsies were collected from patients with no preoperative chemotherapy or radiotherapy (26 males and, 3 females, mean age±SD: 62.4±13.3 years). Seventeen adjacent uninvolved tissues with no abnormalities upon histological examination were considered normal controls (14 males and, 3 females, mean age±SD: 64.2±7.4 years) . Quantitative PCR was performed to evaluate the gene expression level of MAGE-A6, MAGE-A11, miR-34a, and miR-125b in bladder cancer biopsies. MAGE-A6 and MAGE-A11 expressions were significantly increased in bladder tumors compared with normal tissues. However, the expression levels of miR-34a and miR-125b were significantly downregulated in bladder tumor tissues. Interestingly, the expression level of all these genes was significantly associated with tumor grade, pathological stage (pT), and muscular invasion. MAGE-A6 and MAGE-A11 can be considered potential markers for the diagnosis and immunotherapy of bladder tumors. Furthermore, the modulation of miR-34a and miR-125b gene expression in association with increased MAGE-A6 and MAGE-A11 genes could open a new horizon in the improvement of bladder cancer.