Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.330
Filtrar
1.
Cancer Manag Res ; 16: 933-939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099762

RESUMEN

The treatment landscape for advanced and metastatic melanoma has drastically changed in recent years, with the advent of novel therapeutic options such as immune checkpoint inhibitors and targeted therapies offering remarkable efficacy and significantly improved patient outcomes compared to traditional approaches. Approximately 50% of melanomas harbor activating BRAF mutations, with over 90% resulting in BRAF V600E. Tumors treated with BRAF inhibitor monotherapy have a high rate of developing resistance within six months. Combination therapy with MEK inhibitors helped to mitigate this treatment resistance and led to improved outcomes. Due to the up-regulation of PD-1/PD-L1 receptors in tumors treated with BRAF/MEK inhibitor therapy, further studies included a third combination agent, anti-PD-1/PD-L1 inhibitors. This triple combination therapy may have superior efficacy and a manageable safety profile when compared with single or double agent therapy regimens.


Effective treatment of advanced and metastatic melanoma can be challenging. Newer treatment methods for patients with BRAF-mutated tumors include a combination of drugs with different complementary mechanisms. These drugs include BRAF-inhibitors, MEK-inhibitors, and PD-1/PD-L1 inhibitors. When these three medications are used in combination, patients may have better response rates and survival outcomes, when compared to using just one or two of these medications together. Toxicity rates are higher with a triple-medication regimen, so careful patient selection is important to consider.

2.
BMC Pulm Med ; 24(1): 379, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090580

RESUMEN

BACKGROUND: Lung cancer, accounting for a significant proportion of global cancer cases and deaths, poses a considerable health burden. Non-small cell lung cancer (NSCLC) patients have a poor prognosis and limited treatment options due to late-stage diagnosis and drug resistance. Dysregulated of the mitogen-activated protein kinase (MAPK) pathway, which is implicated in NSCLC pathogenesis, underscores the potential of MEK inhibitors such as binimetinib. Despite promising results in other cancers, comprehensive studies evaluating the safety and efficacy of binimetinib in lung cancer are lacking. This systematic review aimed to investigate the safety and efficacy of binimetinib for lung cancer treatment. METHODS: We searched PubMed, Scopus, Web of Science, and Google Scholar until September 2023. Clinical trials evaluating the efficacy or safety of binimetinib for lung cancer treatment were included. Studies were excluded if they included individuals with conditions unrelated to lung cancer, investigated other treatments, or had different types of designs. The quality assessment was conducted utilizing the National Institutes of Health tool. RESULTS: Seven studies with 228 participants overall were included. Four had good quality judgments, and three had fair quality judgments. The majority of patients experienced all-cause adverse events, with diarrhea, fatigue, and nausea being the most commonly reported adverse events of any grade. The objective response rate (ORR) was up to 75%, and the median progression-free survival (PFS) was up to 9.3 months. The disease control rate after 24 weeks varied from 41% to 64%. Overall survival (OS) ranged between 3.0 and 18.8 months. Notably, treatment-related adverse events were observed in more than 50% of patients, including serious adverse events such as colitis, febrile neutropenia, and pulmonary infection. Some adverse events led to dose limitation and drug discontinuation in five studies. Additionally, five studies reported cases of death, mostly due to disease progression. The median duration of treatment ranged from 14.8 weeks to 8.4 months. The most common dosage of binimetinib was 30 mg or 45 mg twice daily, sometimes used in combination with other agents like encorafenib or hydroxychloroquine. CONCLUSIONS: Only a few studies have shown binimetinib to be effective, in terms of improving OS, PFS, and ORR, while most of the studies found nonsignificant efficacy with increased toxicity for binimetinib compared with traditional chemotherapy in patients with lung cancer. Further large-scale randomized controlled trials are recommended.


Asunto(s)
Bencimidazoles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Bencimidazoles/uso terapéutico , Bencimidazoles/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Supervivencia sin Progresión
3.
Cell Commun Signal ; 22(1): 392, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118068

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1ß (IL-1ß) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1ß-mediated EMT are not yet completely understood. Here, we found that IL-1ß stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1ß-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1ß-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1ß-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Interleucina-1beta , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células A549 , Receptores ErbB/metabolismo
4.
Cancers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123482

RESUMEN

BACKGROUND: Adjuvant therapy has improved the clinical prognosis for postoperative melanoma patients. However, the long-term efficacy of this therapy on the melanoma acral and mucosal subtypes has not been fully evaluated in previous trials. This study assessed the 3-year recurrence-free survival and overall survival of patients with melanoma, including the acral and mucosal subtypes, treated with anti-PD-1 antibody (Ab) or with the combination of the BRAF and MEK inhibitors dabrafenib and trametinib. METHODS: We retrospectively analyzed both the 3-year time to relapse (TTR) and overall survival (OS) of 120 patients treated with anti-PD-1 antibody (Ab), or with the combination of dabrafenib and trametinib. RESULTS: The overall median TTR was 18.4 months, with a range of 0.69 to 36 months. The 3-year TTR of the acral and mucosal types was 28.1% and 38.5%, respectively. Baseline tumor thickness (TT) and acral type were associated with the TTR in subgroup analysis. Moreover, we classified 104 acral and non-acral cutaneous patients into the anti-PD-1 Abs or dabrafenib plus trametinib combined therapies cohort in multiple analyses. The acral subtype and TT were detected as important prognostic factors. In the 3-year OS, only tumor ulceration was associated with the OS in both univariate and multiple analyses. There was no significant difference in baseline or treatment-related factors of the mucosal type (p > 0.05). CONCLUSION: This study suggests that adjuvant therapy is more effective with non-acral cutaneous melanoma than either the acral or mucosal types at the 3-year TTR endpoint.

5.
ChemMedChem ; : e202400418, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153203

RESUMEN

Heat Shock Protein 90 (Hsp90) is responsible for the proper folding and maturation of ~400 client protein substrates, many of which are directly associated with the ten hallmarks of cancer. Hsp90 is a great target for cancer therapy including melanoma, since Hsp90 inhibition can disrupt multiple oncogenic pathways simultaneously. In this study, we report the synthesis and anti-proliferative activity manifested by a series of Hsp90 C-terminal inhibitors against mutant BRAF and wild-type BRAF melanoma cells. Furthermore, we explored structure-activity relationships (SAR) for the amide moiety of 6 (B1), a novel Hsp90 C-terminal inhibitor via introduction of amide bioisosteres. Compound 6 displayed an IC50 of 1.01 µM, 0.782 µM, 0.607 µM and 1.413 µM against SKMel173, SKMel103, SKMel19 and A375 cells, respectively.

6.
Int J Cosmet Sci ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128885

RESUMEN

OBJECTIVE: Hydrolyzed conchiolin protein (HCP) derived from pearl and nacre extracts exerts skin-lightening effects; however, the underlying molecular mechanisms are not fully understood. Herein, we investigated the effect of HCP on melanogenesis and the signalling pathways involved. METHODS: B16F10 cells and PIG cells were treated with HCP to verify its ability to inhibit melanin. Western Blot, immunofluorescence, and flow cytometry methods were performed to investigate the effect of HCP on melanogenesis signalling pathway proteins. The inhibitors were used to further validate the effect of HCP on PKA/CREB and MEK/ERK signalling pathways. To further evaluate the whitening ability of HCP, changes in melanin were detected using 3D melanin skin model and zebrafish model. RESULTS: HCP was found to significantly inhibit melanin synthesis and decrease the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-2, in a dose-dependent manner. Additionally, we revealed that HCP suppresses melanogenesis via the regulation of the PKA/cAMP response element-binding (CREB) and MEK/extracellular signalling-regulated kinase (ERK) signalling pathways. Using 3D melanin skin models, we demonstrated that HCP can achieve skin-lightening effects by improving apparent chroma, increasing apparent brightness, and inhibiting melanin synthesis. Furthermore, HCP exhibits skin-whitening effects in a zebrafish model. CONCLUSION: These results suggest that HCP suppresses the melanogenesis signalling cascade by inhibiting the PKA/CREB, MEK/ERK signalling pathway and downregulating MITF and its downstream signalling pathways, resulting in decreased melanin synthesis. In summary, HCP is a potential anti-pigmentation agent with promising applications in cosmetics and pharmaceutical products.


OBJECTIF: La protéine conchioline hydrolysée (HCP) dérivée des extraits de perle et de nacre exerce des effets éclaircissants sur la peau ; cependant, les mécanismes moléculaires sous­jacents ne sont pas entièrement compris. Dans cette étude, nous avons investigué l'effet de la HCP sur la mélanogenèse et les voies de signalisation impliquées. MÉTHODES: Les cellules B16F10 et PIG ont été traitées avec la HCP pour vérifier sa capacité à inhiber la mélanine. Des méthodes de Western Blot, d'immunofluorescence et de cytométrie en flux ont été réalisées pour étudier l'effet de la HCP sur les protéines des voies de signalisation de la mélanogenèse. Les inhibiteurs ont été utilisés pour valider davantage l'effet de la HCP sur les voies de signalisation PKA/CREB et MEK/ERK. Pour évaluer plus en détail la capacité éclaircissante de la HCP, les changements de mélanine ont été détectés en utilisant un modèle de peau en 3D de mélanine et un modèle de poisson­zèbre. RÉSULTATS: Il a été constaté que la HCP inhibe significativement la synthèse de la mélanine et diminue l'expression des protéines liées à la mélanogenèse, telles que le facteur de transcription associé à la microphthalmie (MITF), la tyrosinase et la protéine liée à la tyrosinase­2, de manière dose­dépendante. De plus, nous avons révélé que la HCP supprime la mélanogenèse via la régulation des voies de signalisation PKA/cAMP et MEK/ERK. En utilisant des modèles de peau en 3D de mélanine, nous avons démontré que la HCP peut atteindre des effets éclaircissants sur la peau en améliorant la chroma apparente, en augmentant la luminosité apparente et en inhibant la synthèse de la mélanine. En outre, la HCP présente des effets éclaircissants sur la peau dans un modèle de poisson­zèbre. CONCLUSION: Ces résultats suggèrent que la HCP supprime la cascade de signalisation de la mélanogenèse en inhibant les voies de signalisation PKA/CREB et MEK/ERK et en régulant à la baisse le MITF et ses voies de signalisation en aval, ce qui entraîne une diminution de la synthèse de la mélanine. En résumé, la HCP est un agent potentiel anti­pigmentation avec des applications prometteuses dans les produits cosmétiques et pharmaceutiques.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39143379

RESUMEN

PURPOSE OF REVIEW: Pediatric low-grade gliomas (pLGGs) often result in significant long-term morbidities despite high overall survival rates. This review aims to consolidate the current understanding of pLGG biology and molecular features and provide an overview of current and emerging treatment strategies. RECENT FINDINGS: Surgical resection remains a primary treatment modality, supplemented by chemotherapy and radiotherapy in specific cases. However, recent advances have elucidated the molecular underpinnings of pLGGs, revealing key genetic abnormalities such as BRAF fusions and mutations and the involvement of the RAS/MAPK and mTOR pathways. Novel targeted therapies, including MEK, BRAF and pan-RAF inhibitors, have shown promise in clinical trials, demonstrating significant efficacy and manageable toxicity. Understanding of pLGGs has significantly improved, leading to more personalized treatment approaches. Targeted therapies have emerged as effective alternatives, potentially reducing long-term toxicities. Future research should focus on optimizing therapy sequences, understanding long-term impacts, and ensuring global accessibility to advanced treatments.

8.
Acta Neuropathol Commun ; 12(1): 127, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127699

RESUMEN

The two types of craniopharyngioma, adamantinomatous (ACP) and papillary (PCP), are clinically relevant tumours in children and adults. Although the biology of primary craniopharyngioma is starting to be unravelled, little is known about the biology of recurrence. To fill this gap in knowledge, we have analysed through methylation array, RNA sequencing and pERK1/2 immunohistochemistry a cohort of paired primary and recurrent samples (32 samples from 14 cases of ACP and 4 cases of PCP). We show the presence of copy number alterations and clonal evolution across recurrence in 6 cases of ACP, and analysis of additional whole genome sequencing data from the Children's Brain Tumour Network confirms chromosomal arm copy number changes in at least 7/67 ACP cases. The activation of the MAPK/ERK pathway, a feature previously shown in primary ACP, is observed in all but one recurrent cases of ACP. The only ACP without MAPK activation is an aggressive case of recurrent malignant human craniopharyngioma harbouring a CTNNB1 mutation and loss of TP53. Providing support for a functional role of this TP53 mutation, we show that Trp53 loss in a murine model of ACP results in aggressive tumours and reduced mouse survival. Finally, we characterise the tumour immune infiltrate showing differences in the cellular composition and spatial distribution between ACP and PCP. Together, these analyses have revealed novel insights into recurrent craniopharyngioma and provided preclinical evidence supporting the evaluation of MAPK pathway inhibitors and immunomodulatory approaches in clinical trials in against recurrent ACP.


Asunto(s)
Evolución Clonal , Craneofaringioma , Sistema de Señalización de MAP Quinasas , Recurrencia Local de Neoplasia , Neoplasias Hipofisarias , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Masculino , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Evolución Clonal/genética , Craneofaringioma/genética , Craneofaringioma/patología , Craneofaringioma/metabolismo , Progresión de la Enfermedad , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Front Oncol ; 14: 1433073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070150

RESUMEN

We present the clinical course of a 4-year-old girl with neurofibromatosis type 1-associated, unresectable, symptomatic urinary bladder ganglioneuroma. She was initially trialed on sirolimus without response and subsequently responded to MEK inhibitor trametinib, with improvement clinically and radiographically over 10 months. This report broadens the repertoire of therapeutic strategies for MEK inhibition in diseases related to the MAPK pathway.

10.
Protein Pept Lett ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39076089

RESUMEN

BACKGROUND: Osteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported. OBJECTIVE: The aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance. METHOD: The expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3'-UTR of RAF1 was confirmed by dual-luciferase reporter assay. RESULTS: Our results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and downregulated miR-605-3p increased the resistance of OS cells to therapeutic agents. CONCLUSION: Our data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.

11.
Vet Res ; 55(1): 95, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075562

RESUMEN

Infection of piglets with Glaesserella parasuis (G. parasuis) induces host immunosuppression. However, the mechanism underlying the immunosuppression of piglets remains unclear. Activation of the PD-1/PD-L1 axis has been shown to trigger host immunosuppression. Baicalin possesses anti-inflammatory and immunomodulatory functions. However, whether baicalin inhibits PD-1/PD-L1 activation and thus alleviates host immunosuppression has not been investigated. In this study, the effect of baicalin on the attenuation of piglet immunosuppression induced by G. parasuis was evaluated. Seventy piglets were randomly divided into the control group, infection group, levamisole group, BMS-1 group, 25 mg/kg baicalin group, 50 mg/kg baicalin group and 100 mg/kg baicalin group. Following pretreatment with levamisole, BMS-1 or baicalin, the piglets were challenged with 1 × 108 CFU of G. parasuis. Our results showed that baicalin, levamisole and BMS-1 modified routine blood indicators and biochemical parameters; downregulated IL-1ß, IL-10, IL-18, TNF-α and IFN-γ mRNA expression; and upregulated IL-2 and IL-8 mRNA expression in blood. Baicalin, levamisole and BMS-1 increased the proportions of CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ T cells and CD3-CD21+ B cells in the splenocyte population, increased the proportions of CD3+ T cells, CD3+CD4+ T cells and CD3+CD8+ T cells in the blood, and inhibited PD-1/PD-L1 and TIM-3 activation. Baicalin, levamisole and BMS-1 reduced p-PI3K, p-Akt, and p-mTOR expression, the p-MEK1/2/MEK1/2 and p-ERK1/2/ERK1/2 ratios and increased RAS expression. Baicalin, levamisole and BMS-1 provided substantial protection against G. parasuis challenge and relieved tissue histopathological damage. Our findings might provide new strategies for controlling G. parasuis infection and other immunosuppressive diseases.


Asunto(s)
Flavonoides , Enfermedades de los Porcinos , Serina-Treonina Quinasas TOR , Animales , Flavonoides/farmacología , Porcinos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Haemophilus parasuis/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Terapia de Inmunosupresión/veterinaria
12.
Curr Oncol ; 31(7): 4022-4029, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057171

RESUMEN

Background: The treatment of BRAF V600E gliomas with BRAF inhibitors (BRAFis) and MEK inhibitors (MEKis) has been increasingly integrated into clinical practice for pediatric low-grade gliomas (PLGGs) and pediatric high-grade gliomas (HGGs). However, some questions remain unanswered, such as the best time to start targeted therapy, duration of treatment, and discontinuation of therapy. Given that no clinical trial has been able to address these critical questions, we developed a Canadian Consensus statement for the treatment of BRAF V600E mutated pediatric as well as adolescent and young adult (AYA) gliomas. Methods: Canadian neuro-oncologists were invited to participate in the development of this consensus. The consensus was discussed during monthly web-based national meetings, and the algorithms were revised until a consensus was achieved. Results: A total of 26 participants were involved in the development of the algorithms. Two treatment algorithms are proposed, one for the initiation of treatment and one for the discontinuation of treatment. We suggest that most patients with BRAF V600E gliomas should be treated with BRAFis ± MEKis upfront. Discontinuation of treatment can be considered in certain circumstances, and we suggest a slow wean. Conclusions: Based on expert consensus in Canada, we developed algorithms for treatment initiation of children and AYA with BRAF V600E gliomas as well as a discontinuation algorithm.


Asunto(s)
Consenso , Glioma , Mutación , Proteínas Proto-Oncogénicas B-raf , Adolescente , Niño , Femenino , Humanos , Masculino , Adulto Joven , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Canadá , Glioma/genética , Glioma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética
13.
Genetics ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005070

RESUMEN

The conserved Rad2/XPG family 5'-3' exonuclease, Exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double strand breaks (DSBs) via homologous recombination. Prior studies provided evidence that the end-resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here we provide evidence that the master meiotic kinase Mek1, a paralogue of Rad53, limits 5'-3' single strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39060118

RESUMEN

Melanoma remains one of the most common cancers diagnosed in the United States, yet there have been substantial advancements in the treatment of resectable disease. Adjuvant therapy with immune checkpoint blockade (ICB) and targeted therapy with BRAF/MEK inhibitors (BRAF/MEKi) have now become standard of care for resectable stage IIIB-IV melanoma. In this article, the authors discuss recent scientific developments pertinent to the treatment of resectable melanoma including ICB, targeted therapy with BRAF/MEKi, oncolytic viruses, tumor-infiltrating lymphocyte therapy, and cancer vaccines.

15.
Genetics ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979911

RESUMEN

The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.

16.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000589

RESUMEN

Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.


Asunto(s)
Alanina , MAP Quinasa Quinasa 1 , Simulación de Dinámica Molecular , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 1/química , Alanina/análogos & derivados , Alanina/química , Alanina/farmacología , Alanina/metabolismo , Humanos , Dominio Catalítico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Activación Enzimática/efectos de los fármacos , Bencimidazoles/farmacología , Bencimidazoles/química
17.
Mol Ther ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033323

RESUMEN

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

18.
Front Cardiovasc Med ; 11: 1404253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011492

RESUMEN

Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.

19.
Transl Oncol ; 47: 102045, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959709

RESUMEN

BACKGROUND: Pediatric gastroenteropancreatic neuroendocrine tumors are exceedingly rare, resulting in most pediatric treatment recommendations being based on data derived from adults. Trametinib is a kinase inhibitor that targets MEK1/2 and has been employed in the treatment of cancers harboring mutations in the Ras pathway. METHODS: We utilized an established human pediatric gastroenteropancreatic neuroendocrine-like tumor patient-derived xenograft (PDX) with a known NRAS mutation to study the effects of MEK inhibition. We evaluated the effects of trametinib on proliferation, motility, and tumor growth in vivo. We created an intraperitoneal metastatic model of this PDX, characterized both the phenotype and the genotype of the metastatic PDX and again, investigated the effects of MEK inhibition. RESULTS: We found target engagement with decreased ERK1/2 phosphorylation with trametinib treatment. Trametinib led to decreased in vitro cell growth and motility, and decreased tumor growth and increased animal survival in a murine flank tumor model. Finally, we demonstrated that trametinib was able to significantly decrease gastroenteropancreatic neuroendocrine intraperitoneal tumor metastasis. CONCLUSIONS: The results of these studies support the further investigation of MEK inhibition in pediatric NRAS mutated solid tumors.

20.
Cell Signal ; 121: 111290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977231

RESUMEN

The overexpression of programmed death ligand 1 (PD-L1) is associated with resistance to anticancer therapies and poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR) mAb, has been widely used clinically for treating several solid tumors. However, whether its anticancer effect involves a reduction in PD-L1 expression remains unclear. The current study aimed to investigate the regulatory effects and underlying mechanism of nimotuzumab on PD-L1 expression in HNSCC both in vitro and in vivo. In vitro, nimotuzumab inhibited IFN-γ-induced PD-L1 upregulation at both the transcriptional and protein levels in the HNSCC cell lines. Subsequent mechanism research revealed that nimotuzumab suppressed IFN-γ-stimulated PD-L1 upregulation mainly by inhibiting phosphorylation of EGFR/MEK/ERK pathway, which was further validated by MEK and ERK inhibitors. In a HNSCC tumor-bearing model, nimotuzumab significantly decreased PD-L1 expression during tumor progression or chemotherapy, and this reduction was accompanied by increased sensitivity of the tumor to docetaxel and atezolizumab. Additionally, nimotuzumab reversed PD-L1 upregulation when combined with Taxol + Cisplatin (TP) induction chemotherapy regimens and improved the CD4+ and CD8+ T cells infiltration in HNSCC patients. These findings provide new insights into the anticancer mechanisms of nimotuzumab in HNSCC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antígeno B7-H1 , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Antígeno B7-H1/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Línea Celular Tumoral , Animales , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Receptores ErbB/metabolismo , Ratones , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Ratones Desnudos , Ratones Endogámicos BALB C , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Cisplatino/farmacología , Cisplatino/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...