Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zool Res ; 45(6): 1188-1200, 2024 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-39318126

RESUMEN

As an essential transcriptional activator, PDX1 plays a crucial role in pancreatic development and ß-cell function. Mutations in the PDX1 gene may lead to type 4 maturity-onset diabetes of the young (MODY4) and neonatal diabetes mellitus. However, the precise mechanisms underlying MODY4 remain elusive due to the paucity of clinical samples and pronounced differences in pancreatic architecture and genomic composition between humans and existing animal models. In this study, three PDX1-mutant cynomolgus macaques were generated using CRISPR/Cas9 technology, all of which succumbed shortly postpartum, exhibiting pancreatic agenesis. Notably, one tri-allelic PDX1-mutant cynomolgus macaque (designated as M4) developed a pancreas, whereas the two mono-allelic PDX1-mutant cynomolgus macaques displayed no anatomical evidence of pancreatic formation. RNA sequencing of the M4 pancreas revealed substantial molecular changes in both endocrine and exocrine functions, indicating developmental delay and PDX1 haploinsufficiency. A marked change in m6A methylation was identified in the M4 pancreas, confirmed through cultured PDX1-mutant islet organoids. Notably, overexpression of the m6A modulator METTL3 restored function in heterozygous PDX1-mutant islet organoids. This study highlights a novel role of m6A methylation modification in the progression of MODY4 and provides valuable molecular insights for preclinical research.


Asunto(s)
Proteínas de Homeodominio , Macaca fascicularis , Páncreas , Transactivadores , Animales , Macaca fascicularis/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Metilación , Femenino , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/veterinaria , Masculino , Enfermedades de los Monos/genética
2.
Curr Diabetes Rev ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38299270

RESUMEN

INTRODUCTION: Neonatal diabetes mellitus (NDM) is characterized by severe hyperglycemia, usually diagnosed in the first few months of an individual's life. It is a genetic disease and one of the main forms of monogenic diabetes. Changes in different genes have already been associated with NDM, including changes in the gene PDX1. METHODS: In this review, we intend to summarize all neonatal diabetes cases caused by PDX1 mutations reported in the literature. For this purpose, we searched keywords in the literature from PubMed and articles cited by the HGMD database. The search retrieved 84 articles, of which 41 had their full text accessed. After applying the study exclusion criteria, nine articles were included. RESULTS: Of those articles, we detected thirteen cases of NDM associated with changes in PDX1; the majority in homozygous or compound heterozygous patients. Until now, variants in the PDX1 gene have been a rare cause of NDM; however, few studies have included the screening of this gene in the investigation of neonatal diabetes. CONCLUSION: In this review, we reinforce the importance of the PDX1 gene inclusion in genetic NGS panels for molecular diagnosis of NDM, and systematic morphological and functional exams of the pancreas when NDM is present.

3.
Med J Armed Forces India ; 79(Suppl 1): S297-S300, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144640

RESUMEN

Maturity onset diabetes in young (MODY) is the most common form of monogenic diabetes, which characteristically presents in adolescents and young adults. Till date, pathogenic variations involving 14 different genes have been causally implicated with the development of MODY. Maturity onset diabetes in young type 4 (MODY-4) is a very rare form of MODY. We present here case of 28-year-old nonobese male patient with distinct family history of diabetes spanning two generations, incidentally, detected to have a rare form of diabetes on genetic analysis when he presented with recurrent thromboembolic manifestations: deep vein thrombosis and pulmonary thromboembolism. Our case highlights a previously unknown disease association of a rare genetic disorder. Increasing awareness about this genetic disorder and early identification of such cases will enhance our understanding of hitherto unknown disease associations and the pathophysiological role of genetic mutations. This may contribute to the improved treatment and prevention of debilitating diseases such as diabetes.

4.
J Clin Endocrinol Metab ; 108(12): e1686-e1694, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37279936

RESUMEN

CONTEXT: Maturity-onset diabetes of the young 4 (MODY4) is caused by mutations of PDX1; its prevalence and clinical features are not well known. OBJECTIVE: This study aimed to investigate the prevalence and clinical characteristics of MODY4 in Chinese people clinically diagnosed with early-onset type 2 diabetes (EOD), and to evaluate the relationship between the PDX1 genotype and the clinical phenotype. METHOD: The study cohort consisted of 679 patients with EOD. PDX1 mutations were screened by DNA sequencing, and their pathogenicity was evaluated by functional experiments and American College of Medical Genetics and Genomics guidelines. MODY4 was diagnosed in individuals with diabetes who carry a pathogenic or likely pathogenic PDX1 variant. All reported cases were reviewed for analyzing the genotype-phenotype relationship. RESULT: 4 patients with MODY4 were identified, representing 0.59% of this Chinese EOD cohort. All the patients were diagnosed before 35 years old, either obese or not obese. Combined with previously reported cases, the analysis revealed that the carriers of homeodomain variants were diagnosed earlier than those with transactivation domain variants (26.10 ± 11.00 vs 41.85 ± 14.66 years old, P < .001), and the proportions of overweight and obese individuals with missense mutation were higher than those with nonsense or frameshift mutations (27/34 [79.4%] vs 3/8 [37.5%], P = .031). CONCLUSION: Our study suggested that MODY4 was prevalent in 0.59% of patients with EOD in a Chinese population. It was more difficult to identify clinically than other MODY subtypes owning to its clinical similarity to EOD. Also, this study revealed that there is some relationship between genotype and phenotype.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Adulto , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Prevalencia , Pueblos del Este de Asia , Mutación , Obesidad
5.
Front Endocrinol (Lausanne) ; 14: 1327729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38333726

RESUMEN

Background: Gitelman Syndrome (GS) patients frequently exhibit disrupted glucose metabolism, attributed to hypokalemia, hypomagnesemia and heightened aldosterone. This study delved into the genetic underpinnings linked to insulin resistance and diabetes in a GS patient, contextualized within his family history. Methods: The hydrochlorothiazide and furosemide loading test were performed to ascertain the presence of GS. Oral glucose tolerance test (OGTT) evaluated glucose metabolism and insulin sensitivity. Whole-exome sequencing, validated by Sanger sequencing, was employed to confirm gene mutations, which were then tracked among the patient's relatives. Results: Symptoms and laboratory examination confirmed the clinical diagnosis of GS. Comprehensive whole-exome sequencing, augmented by Sanger sequencing validation, revealed a compound heterozygous mutation within the SLC12A3 gene (c.1108G>C in exon 9, c.676G>A in exon 5 and c.2398G>A in exon 20) in the patient. The OGTT affirmed diabetes and heightened insulin resistance, distinct from previous patients with GS we evaluated. Further genetic analysis identified a missense heterozygous mutation (c.97C>G in exon 1) within the PDX1 gene, inherited from the patient's diabetic mother without GS. Furthermore, the patient's brother, with impaired glucose tolerance but regular potassium levels, also bore this mutation, hinting at additional impacts of the PDX1 gene mutation on glucose metabolism regulation beyond the known impacts of GS. Conclusion: This study unveils unprecedented compound heterozygous mutations in the SLC12A3 and PDX1 genes in a GS patient. These findings illuminate the potential complex genetic factors influencing glucose metabolism disruptions in GS. Take-home message: This research uncovers a novel combination of SLC12A3 and PDX1 gene mutations in a Gitelman Syndrome patient, revealing intricate genetic factors that potentially disrupt glucose metabolism and shedding light on familial diabetes links.


Asunto(s)
Diabetes Mellitus , Síndrome de Gitelman , Resistencia a la Insulina , Masculino , Humanos , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Resistencia a la Insulina/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Mutación , Diabetes Mellitus/genética , Glucosa
6.
Eur J Med Genet ; 64(5): 104194, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33746035

RESUMEN

Maturity-Onset Diabetes of the Young type 4 is a rare form of diabetes mellitus, caused by mutations in the PDX1 gene. However, only a few mutations in this gene have been associated as a cause of monogenic diabetes up to date. It makes difficult to create a clinical manifestation profile of this disease and, consequently, to improve the therapeutic management for these patients. Here we report a normal weight woman, diagnosed with diabetes mellitus at 27 years old, during her first pregnancy. At the time of the recruitment, she was 40 years old and had a body mass index of 23.9 kg/m2, glycated hemoglobin level of 9.6%, and fasting plasma glucose (FPG) of 254 mg/dL. She presented no diabetic complications and she was being treated with insulin. She reported a family history of diabetes mellitus characteristic of an autosomal dominant mode of inheritance. Molecular analysis of the PDX1 gene revealed the missense variant c.532G > A (p.(Glu178Lys)) segregating from the patient to her son, reported as diabetic. It was absent in her healthy daughter. The c.532G > A seems to be a rare variant, absent in human variants databases, and among 86 normoglycemic controls. Eight in silico algorithms classified this variant as probably pathogenic. Additionally, analysis of the evolutionary conservation showed the glutamic acid in the position 178 of PDX-1 protein as conserved among several species. Our findings reinforce the importance of screening rare MODY genes among families with suspicion of monogenic diabetes to help better understand the clinical manifestations of this disease.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodominio/genética , Transactivadores/genética , Adulto , Anciano , Secuencia Conservada , Diabetes Mellitus Tipo 2/patología , Femenino , Proteínas de Homeodominio/química , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Fenotipo , Transactivadores/química
7.
J Endocrinol ; 244(2): 323-337, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31682591

RESUMEN

Maturity-onset diabetes of the young (MODY) is a group of monogenetic forms of diabetes mellitus caused by mutations in genes regulating ß-cell development and function. MODY represents a heterogeneous group of non-insulin-dependent diabetes arising in childhood or adult life. Interestingly, clinical heterogeneity in MODY patients like variable disease onset and severity is observed even among individual family members sharing the same mutation, an issue that is not well understood. As high blood glucose levels are a well-known factor promoting ß-cell stress and ultimately leading to cell death, we asked whether additional ß-cell stress might account for the occurrence of disease heterogeneity in mice carrying a MODY4 mutation. In order to challenge ß-cells, we established a MODY4 animal model based on Pdx1 (pancreatic and duodenal homeobox 1) haploinsufficiency, which allows conditional modulation of cell stress by genetic inhibition of the stress-responsive IKK/NF-κB signalling pathway. While Pdx1+/- mice were found glucose intolerant without progressing to diabetes, additional challenge of ß-cell function by IKK/NF-κB inhibition promoted rapid diabetes development showing hyperglycaemia, hypoinsulinemia and loss of ß-cell mass. Disease pathogenesis was characterized by deregulation of genes controlling ß-cell homeostasis and function. Importantly, restoration of normal IKK/NF-κB signalling reverted the diabetic phenotype including normalization of glycaemia and ß-cell mass. Our findings implicate that the avoidance of additional ß-cell stress can delay a detrimental disease progression in MODY4 diabetes. Remarkably, an already present diabetic phenotype can be reversed when ß-cell stress is normalized.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Glucemia/metabolismo , Muerte Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Fisiológico , Transactivadores/genética , Transactivadores/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-31333579

RESUMEN

Maturity-onset diabetes of the young (MODY) is the most common monogenetic diabetes, which is easily misdiagnosed. We describe the first Chinese MODY4 family with a novel mutation, indicating that MODY4 cannot be excluded in early-onset obese diabetes, and pancreatic exocrine dysfunction could be present in MODY4.

9.
Artículo en Inglés | MEDLINE | ID: mdl-26543388

RESUMEN

Maturity onset diabetes of the young (MODY) is a rare form of diabetes mellitus typically seen in young adults that results from pancreatic beta-cell dysfunction. MODY4 is a rare subtype caused by a PDX1 mutation. In this case, we present a nonobese 26-year-old male with polyuria and polydipsia. Lab work showed a blood glucose of 511 mg/dL, no ketones or antibodies (insulin, islet cell, and glutamic acid decarboxylase [GAD]), C-peptide of 1.6 ng/mL, and A1c 9.3%. Genetic analysis revealed a novel nonsense mutation in the PDX1 gene, consistent with MODY type 4. Given this patient's particular genetic mutation affecting the incretin pathway, sitagliptin was substituted for glyburide, which led to significant improvement in glycemic control. Our case report identifies a unique mutation in a rare form of MODY and outlines management of ensuing diabetes through targeting its inherent genetic mutation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...