Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Magn Reson Imaging ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563660

RESUMEN

BACKGROUND: The modified Look-Locker inversion recovery (MOLLI) sequence is commonly used for myocardial T1 mapping. However, it acquires images with different inversion times, which causes difficulty in motion correction for respiratory-induced misregistration to a given target image. HYPOTHESIS: Using a generative adversarial network (GAN) to produce virtual MOLLI images with consistent heart positions can reduce respiratory-induced misregistration of MOLLI datasets. STUDY TYPE: Retrospective. POPULATION: 1071 MOLLI datasets from 392 human participants. FIELD STRENGTH/SEQUENCE: Modified Look-Locker inversion recovery sequence at 3 T. ASSESSMENT: A GAN model with a single inversion time image as input was trained to generate virtual MOLLI target (VMT) images at different inversion times which were subsequently used in an image registration algorithm. Four VMT models were investigated and the best performing model compared with the standard vendor-provided motion correction (MOCO) technique. STATISTICAL TESTS: The effectiveness of the motion correction technique was assessed using the fitting quality index (FQI), mutual information (MI), and Dice coefficients of motion-corrected images, plus subjective quality evaluation of T1 maps by three independent readers using Likert score. Wilcoxon signed-rank test with Bonferroni correction for multiple comparison. Significance levels were defined as P < 0.01 for highly significant differences and P < 0.05 for significant differences. RESULTS: The best performing VMT model with iterative registration demonstrated significantly better performance (FQI 0.88 ± 0.03, MI 1.78 ± 0.20, Dice 0.84 ± 0.23, quality score 2.26 ± 0.95) compared to other approaches, including the vendor-provided MOCO method (FQI 0.86 ± 0.04, MI 1.69 ± 0.25, Dice 0.80 ± 0.27, quality score 2.16 ± 1.01). DATA CONCLUSION: Our GAN model generating VMT images improved motion correction, which may assist reliable T1 mapping in the presence of respiratory motion. Its robust performance, even with considerable respiratory-induced heart displacements, may be beneficial for patients with difficulties in breath-holding. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1.

2.
J Magn Reson Imaging ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305588

RESUMEN

BACKGROUND: T1 mapping of the liver is confounded by the presence of fat. Multiparametric T1 mapping combines fat-water separation with T1-weighting to enable imaging of water-specific T1 (T1Water ), proton density fat fraction (PDFF), and T2* values. However, normative T1Water values in the liver and its dependence on age/sex is unknown. PURPOSE: Determine normative values for T1Water in the liver with comparison to MOLLI and evaluate a T2*-compensation approach to reduce T1 variability. STUDY TYPE: Prospective observational; phantoms. POPULATIONS: One hundred twenty-four controls (56 male, 18-75 years), 50 patients at-risk for liver disease (18 male, 30-76 years). FIELD STRENGTH/SEQUENCE: 2.89 T; Saturation-recovery chemical-shift encoded T1 Mapping (SR-CSE); MOLLI. ASSESSMENT: SR-CSE provided T1Water measurements, PDFF and T2* values in the liver across three slices in 6 seconds. These were compared with MOLLI T1 values. A new T2*-compensation approach to reduce T1 variability was evaluated test/re-test reproducibility. STATISTICAL TESTS: Linear regression, ANCOVA, t-test, Bland and Altman, intraclass correlation coefficient (ICC). P < 0.05 was considered statistically significant. RESULTS: Liver T1 values were significantly higher in healthy females (F) than males (M) for both SR-CSE (F-973 ± 78 msec, M-930 ± 72 msec) and MOLLI (F-802 ± 55 msec, M-759 ± 69 msec). T1 values were negatively correlated with age, with similar sex- and age-dependencies observed in T2*. The T2*-compensation model reduced the variability of T1 values by half and removed sex- and age-differences (SR-CSE: F-946 ± 36 msec, M-941 ± 43 msec; MOLLI: F-775 ± 35 msec, M-770 ± 35 msec). At-risk participants had elevated PDFF and T1 values, which became more distinct from the healthy cohort after T2*-compensation. MOLLI systematically underestimated liver T1 values by ~170 msec with an additional positive T1-bias from fat content (~11 msec/1% in PDFF). Reproducibility ICC values were ≥0.96 for all parameters. DATA CONCLUSION: Liver T1Water values were lower in males and decreased with age, as observed for SR-CSE and MOLLI acquisitions. MOLLI underestimated liver T1 with an additional large positive fat-modulated T1 bias. T2*-compensation removed sex- and age-dependence in liver T1, reduced the range of healthy values and increased T1 group differences between healthy and at-risk groups. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

3.
Int J Cardiovasc Imaging ; 40(1): 83-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874446

RESUMEN

T1/T2 parametric mapping may reveal patterns of elevation ("hotspots") in myocardial diseases, such as rejection in orthotopic heart transplant (OHT) patients. This study aimed to evaluate the diagnostic accuracy of free-breathing (FB) multi-parametric SAturation recovery single-SHot Acquisition (mSASHA) T1/T2 mapping in identifying hotspots present on conventional Breath-held Modified Look-Locker Inversion recovery (BH MOLLI) T1 and T2-prepared balanced steady-state free-precession (BH T2p-bSSFP) maps in pediatric OHT patients. Pediatric OHT patients underwent noncontrast 1.5T CMR with BH MOLLI T1 and T2p-bSSFP and prototype FB mSASHA T1/T2 mapping in 8 short-axis slices. FB and BH T1/T2 hotspots were segmented using semi-automated thresholding (ITK-SNAP) and their 3D coordinate locations were collected (3-Matic, Materialise, Leuven, Belgium). Receiver operator characteristic curve analysis and measures of central tendency were utilized. 40 imaging datasets from 23 pediatric OHT patients were obtained. FB mSASHA yielded a sensitivity of 82.8% for T1 and 80% for T2 maps when compared to the standard BH MOLLI, as well as 100% specificity for both T1 and T2 maps. When identified on both FB and BH maps, hotspots overlapped in all cases, with an average long axis offset between FB and BH hotspot centers of 5.8 mm (IQR 3.5-8.2) on T1 and 5.9 mm (IQR 3.5-8.2) on T2 maps. FB mSASHA T1/T2 maps can identify hotspots present on conventional BH T1/T2 maps in pediatric patients with OHT, with high sensitivity, specificity, and overlap in 3D space. Free-breathing mapping may improve patient comfort and facilitate OHT assessment in younger patient populations.


Asunto(s)
Trasplante de Corazón , Imagen por Resonancia Magnética , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Valor Predictivo de las Pruebas , Corazón , Trasplante de Corazón/efectos adversos , Contencion de la Respiración , Reproducibilidad de los Resultados , Fantasmas de Imagen
4.
Magn Reson Med ; 90(2): 539-551, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036367

RESUMEN

PURPOSE: Enabling fast and accessible myocardial T1 mapping is crucial for extending its clinical application. We introduce Open-MOLLI-SMS combining simultaneous multi-slice (SMS) with auto-calibration and variable-rate selective excitation (VERSE)-multiband pulses to obtain all slices in a fast single-shot T1 mapping sequence. METHODS: Open-MOLLI-SMS was developed by integrating SMS with the open-source method Open-MOLLI previously implemented in Pulseq. Three methods were integrated for Open-MOLLI-SMS: (1) auto-calibration blip patterns to ensure consistency between the data and coil information; (2) a blipped-balanced SSFP (bSSFP) readout to induce controlled aliasing in parallel imaging shifts without disturbing the bSSFP frequency response; and (3) a VERSE-multiband pulse for minimizing the achievable TR and the specific absortion rate (SAR) impact of SMS. Two (SMS2) or three (SMS3) slices were excited simultaneously and encoded with an in-plane acceleration factor of 2. Experiments were performed in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom and five healthy volunteers. RESULTS: Phantom results show accurate T1 estimates for reference values between 400 to 2200 ms. Artifacts were visible for Open-MOLLI-SMS3 but not replicated in vivo. In vivo Open-MOLLI-SMS (T1 SMS2 = 993 ± 10 ms; T1 SMS3 = 1031 ± 17 ms) provided similar values to mean T1 single-band Open-MOLLI estimates (T1 Open-MOLLI = 1005 ± 47 ms). Open-MOLLI-SMS2 provided the closest estimates to the reference. CONCLUSION: This proof-of-principle implementation study demonstrates the feasibility of speeding up T1 -mapping acquisitions and increasing coverage by combining auto-calibration strategies with a blipped-bSFFP readout and VERSE multiband RF excitation pulses. The proposed methodology was built on the Open-MOLLI mapping sequence, which provides a fast means for prototyping and enables open-source sharing of the method.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Miocardio , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Aceleración , Reproducibilidad de los Resultados , Corazón/diagnóstico por imagen
5.
Acta Biomater ; 163: 158-169, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34808415

RESUMEN

Contact guidance, the widely-known phenomenon of cell alignment, is an essential step in the organization of adherent cells. This guidance is known to occur by, amongst other things, anisotropic features in the environment including elastic heterogeneity. To understand the origins of this guidance we employed a novel statistical thermodynamics framework, which recognises the non-thermal fluctuations in the cellular response, for modelling the response of the cells seeded on substrates with alternating soft and stiff stripes. Consistent with observations, the modelling framework predicts the existence of three regimes of cell guidance: (i) in regime I for stripe widths much larger than the cell size guidance is primarily entropic; (ii) for stripe widths on the order of the cell size in regime II guidance is biochemically mediated and accompanied by changes to the cell morphology while (iii) in regime III for stripe widths much less than the cell size there is no guidance as cells cannot sense the substrate heterogeneity. Guidance in regimes I and II is due to "molli-avoidance" with cells primarily residing on the stiff stripes. While the molli-avoidance tendency is not lost with decreasing density of collagen coating the substrate, the reduced focal adhesion formation with decreasing collagen density tends to inhibit contact guidance. Our results provide clear physical insights into the interplay between cell mechano-sensitivity and substrate elastic heterogeneity that ultimately leads to the contact guidance of cells in heterogeneous tissues. STATEMENT OF SIGNIFICANCE: Cellular morphology and organization play a crucial role in the micro-architecture of tissues and dictates their biological and mechanical functioning. Despite the importance of cellular organization in all facets of tissue biology, the fundamental question of how a cell organizes itself in an anisotropic environment is still poorly understood. We employ a novel statistical thermodynamics framework which recognises the non-thermal fluctuations in the cellular response to investigate cell guidance on substrates with alternating soft and stiff stripes. The propensity of cells to primarily reside on stiff stripes results in strong guidance when the period of the stripes is larger than the cell size. For smaller stripe periods, cells sense a homogeneous substrate and guidance is lost.


Asunto(s)
Comunicación Celular , Colágeno , Elasticidad , Colágeno/metabolismo , Citoesqueleto de Actina/metabolismo , Termodinámica
6.
Magn Reson Imaging ; 95: 90-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-32304799

RESUMEN

BACKGROUND: This study evaluates the possibility for replacing conventional 3 slices, 3 breath-holds MOLLI cardiac T1 mapping with single breath-hold 3 simultaneous multi-slice (SMS3) T1 mapping using blipped-CAIPIRINHA SMS-bSSFP MOLLI sequence. As a major drawback, SMS-bSSFP presents unique artefacts arising from side-lobe slice excitations that are explained by imperfect RF modulation rendering and bSSFP low flip angle enhancement. Amplitude-only RF modulation (AM) is proposed to reduce these artefacts in SMS-MOLLI compared to conventional Wong multi-band RF modulation (WM). MATERIALS AND METHODS: Phantoms and ten healthy volunteers were imaged at 1.5 T using a modified blipped-CAIPIRINHA SMS-bSSFP MOLLI sequence with 3 simultaneous slices. WM-SMS3 and AM-SMS3 were compared to conventional single-slice (SMS1) MOLLI. First, SNR degradation and T1 accuracy were measured in phantoms. Second, artefacts from side-lobe excitations were evaluated in a phantom designed to reproduce fat presence near the heart. Third, the occurrence of these artefacts was observed in volunteers, and their impact on T1 quantification was compared between WM-SMS3 and AM-SMS3 with conventional MOLLI as a reference. RESULTS: In the phantom, larger slice gaps and slice thicknesses yielded higher SNR. There was no significant difference of T1 values between conventional MOLLI and SMS3-MOLLI (both WM and AM). Positive banding artefacts were identified from fat neighbouring the targeted FOV due to side-lobe excitations from WM and the unique bSSFP signal profile. AM RF pulses reduced these artefacts by 38%. In healthy volunteers, AM-SMS3-MOLLI showed similar artefact reduction compared to WM-SMS3-MOLLI (3 ± 2 vs 5 ± 3 corrupted LV segments out of 16). In-vivo native T1 values obtained from conventional MOLLI and AM-SMS3-MOLLI were equivalent in LV myocardium (SMS1-T1 = 935.5 ± 36.1 ms; AM-SMS3-T1 = 933.8 ± 50.2 ms; P = 0.436) and LV blood pool (SMS1-T1 = 1475.4 ± 35.9 ms; AM-SMS3-T1 = 1452.5 ± 70.3 ms; P = 0.515). Identically, no differences were found between SMS1 and SMS3 postcontrast T1 values in the myocardium (SMS1-T1 = 556.0 ± 19.7 ms; SMS3-T1 = 521.3 ± 28.1 ms; P = 0.626) and the blood (SMS1-T1 = 478 ± 65.1 ms; AM-SMS3-T1 = 447.8 ± 81.5; P = 0.085). CONCLUSIONS: Compared to WM RF modulation, AM SMS-bSSFP MOLLI was able to reduce side-lobe artefacts considerably, providing promising results to image the three levels of the heart in a single breath hold. However, few artefacts remained even using AM-SMS-bSSFP due to residual RF imperfections. The proposed blipped-CAIPIRINHA MOLLI T1 mapping sequence provides accurate in vivo T1 quantification in line with those obtained with a single slice acquisition.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Artefactos , Fantasmas de Imagen
7.
Magn Reson Imaging ; 96: 85-92, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470451

RESUMEN

The native T1 values of the myocardium provide valuable information for tissue characterization and assessment of cardiomyopathies. In this study, we proposed a novel hybrid MOLLI sequence for myocardial T1 mapping. Unlike the two groups of inversion-recovery sampling of the conventional MOLLI5(3 s)3 sequence, the hybrid MOLLI sequence consisted of an inversion-recovery block followed by a saturation-recovery block. Since the second block employed a saturation pulse to spoil the longitudinal magnetization, it did not require a waiting period as MOLLI5(3 s)3 did. As a result, the hybrid MOLLI required less acquisition time leading to a practical application for patients with breath-hold difficulties. Phantom and healthy subject experiments were performed to evaluate the proposed sequence against the MOLLI5(3 s)3 sequence. The phantom study showed that the heart-rate dependency of one variant of the hybrid MOLLI sequences, hbMOLLI4, was comparable to that of MOLLI5(3 s)3. In addition, both hbMOLLI4 and MOLLI53 derived T1 values under 2% variations with simulated heart rates from 50 to 90 beats-per-minute within the range of T1 values for myocardium and blood before contrast administration. Simulation results suggested slightly reduced T1 fitting precision in hbMOLLI4 compared with MOLLI5(3 s)3, but prominently better than saturation recovery. Bland-Altman analysis on accuracy assessment revealed that hbMOLLI4 partially reduced the T1 underestimation of MOLLI5(3 s)3. In the human study, The T1 values of both methods were consistent (hbMOLLI4 vs. MOLLI5(3 s)3, slope = 1.14, R2 > 0.97), with equal reproducibility. The results supported that hybrid MOLLI produced comparable T1 mapping results in terms of accuracy, reproducibility, and heart-rate dependency, at the expense of slightly reduced precision. We concluded that the hybrid MOLLI sequence presents a competitive alternative to the MOLLI5(3 s)3 sequence when a speedy acquisition is required.


Asunto(s)
Cardiomiopatías , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Miocardio , Fantasmas de Imagen
8.
Diagnostics (Basel) ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36359572

RESUMEN

Objectives: To systematically compare two modified Look-Locker inversion recovery (MOLLI) T1 mapping sequences and their impact on (1) myocardial T1 values native, (2) post-contrast and (3) extracellular volume (ECV). Methods: 200 patients were prospectively included for 1.5 T CMR for work-up of ischemic or non-ischemic cardiomyopathies. To determine native and post-contrast T1 for ECV calculation, two different T1 mapping MOLLI acquisition schemes, 5(3)3 (designed for native scans with long T1) and 4(1)3(1)2 (designed for post-contrast scans with short T1), were acquired in identical mid-ventricular short-axis slices. Both schemes were acquired in native and post-contrast scans. Results: Datasets from 163 patients were evaluated (age 55 ± 17 years; 38% female). Myocardial T1 native for 5(3)3 was 1017 ± 42 ms vs. 956 ± 40 ms for 4(1)3(1)2, with mean intraindividual difference −61 ms (p < 0.0001). Post-contrast myocardial T1 in patients was similar for both acquisition schemes, with 494 ± 48 ms for 5(3)3 and 490 ± 45 ms for 4(1)3(1)2 and mean intraindividual difference −4 ms. Myocardial ECV for 5(3)3 was 27.6 ± 4% vs. 27 ± 4% for 4(1)3(1)2, with mean difference −0.6 percentage points (p < 0.0001). Conclusions: The T1 MOLLI 5(3)3 acquisition scheme provides a reliable estimation of myocardial T1 for the clinically relevant range of long and short T1 values native and post-contrast. In contrast, the T1 MOLLI 4(1)3(1)2 acquisition scheme may only be used for post-contrast scans according to its designed purpose.

9.
BMC Med Imaging ; 22(1): 122, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799139

RESUMEN

BACKGROUND: To assess the feasibility of biventricular SAPPHIRE T1 mapping in vivo across field strengths using diastolic, systolic and dark-blood (DB) approaches. METHODS: 10 healthy volunteers underwent same-day non-contrast cardiovascular magnetic resonance at 1.5 Tesla (T) and 3 T. Left and right ventricular (LV, RV) T1 mapping was performed in the basal, mid and apical short axis using 4-variants of SAPPHIRE: diastolic, systolic, 0th and 2nd order motion-sensitized DB and conventional modified Look-Locker inversion recovery (MOLLI). RESULTS: LV global myocardial T1 times (1.5 T then 3 T results) were significantly longer by diastolic SAPPHIRE (1283 ± 11|1600 ± 17 ms) than any of the other SAPPHIRE variants: systolic (1239 ± 9|1595 ± 13 ms), 0th order DB (1241 ± 10|1596 ± 12) and 2nd order DB (1251 ± 11|1560 ± 20 ms, all p < 0.05). In the mid septum MOLLI and diastolic SAPPHIRE exhibited significant T1 signal contamination (longer T1) at the blood-myocardial interface not seen with the other 3 SAPPHIRE variants (all p < 0.025). Additionally, systolic, 0th order and 2nd order DB SAPPHIRE showed narrower dispersion of myocardial T1 times across the mid septum when compared to diastolic SAPPHIRE (interquartile ranges respectively: 25 ms, 71 ms, 73 ms vs 143 ms, all p < 0.05). RV T1 mapping was achievable using systolic, 0th and 2nd order DB SAPPHIRE but not with MOLLI or diastolic SAPPHIRE. All 4 SAPPHIRE variants showed excellent re-read reproducibility (intraclass correlation coefficients 0.953 to 0.996). CONCLUSION: These small-scale preliminary healthy volunteer data suggest that DB SAPPHIRE has the potential to reduce partial volume effects at the blood-myocardial interface, and that systolic SAPPHIRE could be a feasible solution for right ventricular T1 mapping. Further work is needed to understand the robustness of these sequences and their potential clinical utility.


Asunto(s)
Óxido de Aluminio , Interpretación de Imagen Asistida por Computador , Frecuencia Cardíaca , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
10.
Magn Reson Imaging ; 89: 92-99, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341905

RESUMEN

BACKGROUND AND PURPOSE: The imaging technique known as Oxygen-Enhanced MRI is under development as a noninvasive technique for imaging hypoxia in tumours and pulmonary diseases. While promising results have been shown in preclinical experiments, clinical studies have mentioned experiencing difficulties with patient motion, image registration, and the limitations of single-slice images compared to 3D volumes. As clinical studies begin to assess feasibility of using OE-MRI in patients, it is important for researchers to communicate about the practical challenges experienced when using OE-MRI on patients to help the technique advance. MATERIALS AND METHODS: We report on our experience with using two types of T1 mapping (MOLLI and VFA) for a recently completed OE-MRI clinical study on oropharyngeal squamous cell carcinoma. RESULTS: We report: (1) the artefacts and practical difficulties encountered in this study; (2) the difference in estimated T1 from each method used - the VFA T1 estimation was higher than the MOLLI estimation by 27% on average; (3) the standard deviation within the tumour ROIs - there was no significant difference in the standard deviation seen within the tumour ROIs from the VFA versus MOLLI; and (4) the OE-MRI response collected from either method. Lastly, we collated the MRI acquisition details from over 45 relevant manuscripts as a convenient reference for researchers planning future studies. CONCLUSION: We have reported our practical experience from an OE-MRI clinical study, with the aim that sharing this is helpful to researchers planning future studies. In this study, VFA was a more useful technique for using OE-MRI in tumours than MOLLI T1 mapping.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados
11.
Magn Reson Med ; 87(6): 2775-2791, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35133018

RESUMEN

PURPOSE: To develop and validate a three-parameter model for improved precision multiparametric SAturation-recovery single-SHot Acquisition (mSASHA) cardiac T1 and T2 mapping with high accuracy in a single breath-hold. METHODS: The mSASHA acquisition consists of nine images of variable saturation recovery and T2 preparation in 11 heartbeats with T1 and T2 values calculated using a three-parameter model. It was validated in simulations and phantoms at 3 T with comparison to a four-parameter joint T1 -T2 technique. The mSASHA acquisition was compared with MOLLI, SASHA, and T2 -prepared balanced SSFP in 10 volunteers. RESULTS: The mSASHA technique had high accuracy in phantoms compared to spin echo, with -0.2 ± 0.3% T1 error and -2.4 ± 1.3% T2 error. The mSASHA coefficient of variation in phantoms for T1 was similar to MOLLI (0.7 ± 0.2% for both) and T2 -prepared balanced SSFP for T2 (1.3 ± 0.7% vs 1.4 ± 0.3%, adjusted p > .05 for both). In simulations, three-parameter mSASHA had higher precision than four-parameter joint T1 -T2 for both T1 and T2 (46% and 11% reductions in T1 and T2 interquartile range for native myocardium). In vivo myocardial mSASHA T1 was similar to SASHA (1523 ± 18 ms vs 1520 ± 18 ms) with similar coefficient of variation to both MOLLI and SASHA (3.3 ± 0.6% vs 3.1 ± 0.6% and 3.3 ± 0.5% respectively, adjusted p > .05 for all). Myocardial mSASHA T2 was 37.1 ± 1.1 ms with similar precision to T2 -prepared balanced SSFP (6.7 ± 1.7% vs 6.0 ± 1.6%, adjusted p > .05). CONCLUSION: Three-parameter mSASHA provides high-accuracy cardiac T1 and T2 quantification in a single breath-hold with similar precision to MOLLI and T2 -prepared balanced SSFP. Further study is required to both establish normative values and demonstrate clinical utility in patient populations.


Asunto(s)
Imagen por Resonancia Magnética , Miocardio , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados
12.
Magn Reson Imaging ; 85: 57-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678435

RESUMEN

BACKGROUND: The effect of hepatic steatosis on the gradient-echo (GRE) based Modified Look-Locker Inversion Recovery (MOLLI) technique for T1 mapping has not been evaluated. The purpose of this study was to evaluate a GRE based MOLLI technique for hepatic T1 mapping and determine the relationship of T1 differences (ΔT1) on in-phase (IP) and out-of-phase (OP) to fat fraction (FF) measurement. MATERIALS AND METHODS: 3 T MRI included MOLLI T1 mapping with TE = 1.3 (OP), 2.4 (IP), and 1.8 ms, and chemical-shift-encoded sequence with spectral modeling of fat to generate FF map as a reference. Bloch simulations and oil/water phantoms were used to characterize the response of the MOLLI T1 in various FF < 30% since MOLLI T1 estimation was erratic beyond this limit. Curve fit between ΔT1 and FF from simulation was applied to validate the phantom and the in-vivo results. Thirty-eight normal volunteers were included (16 women, Age 44 ± 12 years, BMI 27 ± 5.3 kg/m2). MOLLI water images were reconstructed by the average of OP and IP images, and the T1 values on water images served as the reference for T1 bias calculation defined as the percent difference between OP, IP, TE = 1.8 ms and the referenced water T1. Linear regression was performed to correlate the FF quantified by the reference and MOLLI methods. RESULTS: Phantom results were consistent with the Bloch simulations. The simulated relationship between FF (0-30%) and ΔT1 could be modeled precisely by a cubic equation with R2 = 1. In-vivo MOLLI ΔT1 and estimated FF were correlated to the reference FF (both R2 ≥ 0.96 and P < 0.001). TE = 1.8 ms demonstrated less T1 bias (-1.34%) compared to TE = OP (5.32%) or IP (-3.8%, both P < 0.001). CONCLUSION: At 3 T, TE of 1.8 ms can be used to reduce the T1 bias and deliver consistent T1 values when FF is <30%.


Asunto(s)
Hígado , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Modelos Lineales , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados
13.
Diagnostics (Basel) ; 11(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34943571

RESUMEN

This study aimed at establishing native T1 reference values for a Canon Vantage Galan 3T system and comparing them with previously published values from different vendors. A total of 20 healthy volunteers (55% Women; 33.9 ± 11.1 years) underwent left ventricular T1 mapping at 3T MR. A MOLLI 5(3)3 sequence was used, acquiring three short-axis slices. Native T1 values are shown as means (±standard deviation) and Student's independent samples t-test was used to test gender differences in T1 values. Pearson's correlation coefficient analysis was used to compare two processes of T1 analysis. The results show a global native T1 mean value of 1124.9 ± 55.2 ms (exponential analysis), that of women being statistically higher than men (1163 ± 30.5 vs. 1077.9 ± 39.5 ms, respectively; p < 0.001). There were no specific tendencies for T1 times in different ventricular slices. We found a strong correlation (0.977, p < 0.001) with T1 times derived from parametric maps (1136.4 ± 60.2 ms). Native T1 reference values for a Canon 3T scanner were provided, and they are on par with those already reported from other vendors for a similar sequence. We also found a correlation between native T1 and gender, with higher values for women.

14.
Magn Reson Med ; 86(6): 3246-3258, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272767

RESUMEN

PURPOSE: A shortage of suitable donor livers is driving increased use of higher risk livers for transplantation. However, current biomarkers are not sensitive and specific enough to predict posttransplant liver function. This is limiting the expansion of the donor pool. Therefore, better noninvasive tests are required to determine which livers will function following implantation and hence can be safely transplanted. This study assesses the temperature sensitivity of proton density fat fraction and relaxometry parameters and examines their potential for assessment of liver function ex vivo. METHODS: Six ex vivo human livers were scanned during static cold storage following normothermic machine perfusion. Proton density fat fraction, T1 , T2 , and T2∗ were measured repeatedly during cooling on ice. Temperature corrections were derived from these measurements for the parameters that showed significant variation with temperature. RESULTS: Strong linear temperature sensitivities were observed for proton density fat fraction (R2 = 0.61, P < .001) and T1 (R2 = 0.78, P < .001). Temperature correction according to a linear model reduced the coefficient of repeatability in these measurements by 41% and 36%, respectively. No temperature dependence was observed in T2 or T2∗ measurements. Comparing livers deemed functional and nonfunctional during normothermic machine perfusion by hemodynamic and biochemical criteria, T1 differed significantly: 516 ± 50 ms for functional versus 679 ± 60 ms for nonfunctional, P = .02. CONCLUSION: Temperature correction is essential for robust measurement of proton density fat fraction and T1 in cold-stored human livers. These parameters may provide a noninvasive measure of viability for transplantation.


Asunto(s)
Hígado Graso , Trasplante de Hígado , Hígado Graso/diagnóstico por imagen , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Perfusión
15.
Artículo en Japonés | MEDLINE | ID: mdl-33612695

RESUMEN

Quantitative evaluation of myocardial native T1 value by measuring modified Look-Locker inversion recovery (MOLLI) method is clinically useful and is used for follow-up of various myocardial diseases. The heart rate during the scan can vary even in the same subjects. Therefore, it is important to know the effects of the heart rate on the native T1 value of the myocardium. In this study, we evaluated the effect of the heart rate on the T1 value in the 5s (3s) 3s scheme, time control data collection period of the MOLLI method, using phantom experiments and experiments of healthy volunteers. The 5s (3s) 3s scheme of the MOLLI method is considered to have little dependence on the heart rate, but the T1 value still varied up to about 7% depending on the heart rate, and was underestimated up to 8% during low heart rate using phantom experiments.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Frecuencia Cardíaca , Humanos , Miocardio , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
16.
Front Cardiovasc Med ; 8: 631366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585589

RESUMEN

Background: Measurement of myocardial T1 is increasingly incorporated into standard cardiovascular magnetic resonance (CMR) protocols, however accuracy may be reduced in patients with metallic cardiovascular implants. Measurement is feasible in segments free from visual artifact, but there may still be off-resonance induced error. Aim: To quantify off-resonance induced T1 error in patients with metallic cardiovascular implants, and validate a method for error correction for a conventional MOLLI pulse sequence. Methods: Twenty-four patients with cardiac implantable electronic devices (CIEDs: 46% permanent pacemakers, PPMs; 33% implantable loop recorders, ILRs; and 21% implantable cardioverter-defibrillators, ICDs); and 31 patients with aortic valve replacement (AVR) (45% metallic) were studied. Paired mid-myocardial short-axis MOLLI and single breath-hold off-resonance field maps were acquired at 1.5 T. T1 values were measured by AHA segment, and segments with visual artifact were excluded. T1 correction was applied using a published relationship between off-resonance and T1. The accuracy of the correction was assessed in 10 healthy volunteers by measuring T1 before and after external placement of an ICD generator next to the chest to generate off-resonance. Results: T1 values in healthy volunteers with an ICD were underestimated compared to without (967 ± 52 vs. 997 ± 26 ms respectively, p = 0.0001), but were similar after correction (p = 0.57, residual difference 2 ± 27 ms). Artifact was visible in 4 ± 12, 42 ± 31, and 53 ± 27% of AHA segments in patients with ILRs, PPMs, and ICDs, respectively. In segments without artifact, T1 was underestimated by 63 ms (interquartile range: 7-143) per patient. The greatest error for patients with ILRs, PPMs and ICDs were 79, 146, and 191 ms, respectively. The presence of an AVR did not generate T1 error. Conclusion: Even when there is no visual artifact, there is error in T1 in patients with CIEDs, but not AVRs. Off-resonance field map acquisition can detect error in measured T1, and a correction can be applied to quantify T1 MOLLI accurately.

17.
Int J Cardiol ; 326: 220-225, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33096146

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance T1-mapping is increasingly used for tissue characterization, commonly based on Modified Look-Locker Inversion recovery (MOLLI). However, there are numerous MOLLI variants with differing normal ranges. This lack of standardization presents confusion and difficulty in inter-center comparisons, hindering widespread adoption of T1-mapping. METHODS: To address this, we performed a structured literature search for native left ventricular myocardial T1-mapping in healthy humans measured using MOLLI variants at 1.5 and 3 Tesla, across scanner vendors. We then used k-means clustering to structure normal MOLLI-T1 values according to magnetic field strength, and investigated correlations between common imaging parameters: repetition time (TR), echo time (TE), flip angle (FA). RESULTS: We analyzed data from 2207 healthy controls in 76 independent reports. Normal MOLLI-T1 standard deviations varied by 11-fold, and dependencies on TE, TR, and FA differed between 1.5 T and 3 T, thwarting meaningful T1 standardization even within a single field strength, including the use of Z-score. However, divergent MOLLI-T1 norms may be structured using data clustering. For 1.5 T, two clusters emerged: Cluster11.5T: T1 = 958 ± 16 ms (n = 1280); Cluster21.5T: T1 = 1027 ± 19 ms (n = 386). For 3 T, three clusters emerged: Cluster13T: T1 = 1160 ± 21 ms (n = 330); Cluster23T: T1 = 1067 ± 18 ms (n = 178); Cluster33T: T1 = 1227 ± 19 ms (n = 41). We then propose the concept of an online calculator for assigning local norms to a known MOLLI-T1 cluster, allowing benchmarking against published norms. CONCLUSION: Clustered structuring allows T1 standardization of widely-divergent MOLLI variants, benchmarking local norms (usually based on smaller samples) against published norms (larger samples). This may increase confidence and quality control in method implementation, facilitating wider clinical adoption of T1-mapping.


Asunto(s)
Benchmarking , Imagen por Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas , Estándares de Referencia , Valores de Referencia , Reproducibilidad de los Resultados
18.
Balkan Med J ; 37(5): 260-268, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32319279

RESUMEN

Background: One of the most important techniques of cardiac magnetic resonance in assessment of coronary heart diseases is adenosine stress myocardial first-pass perfusion imaging. Using this imaging method, there should be an adequate response to the drug adenosine to make an accurate evaluation. The conventional signs of drug response are not always observed and are often subjective. Methods based on splenic perfusion might possess limitations as well. Therefore, T1 mapping presents as a novel, quantitative and reliable method. There are several studies analyzing this newly discovered property of different T1 mapping sequences. However most of these studies are enrolling only one of the techniques. Aims: To compare modified look-locker inversion recovery and shortened modified look-locker inversion recovery sequences in terms of T1 reactivity and to determine the relationship between T1 reactivity and conventional stress adequacy assessment methods in adenosine stress perfusion cardiac magnetic resonance. Study Design: A cross-sectional study using STARD reporting guideline. Methods: Thirty-four consecutive patients, who were referred for adenosine stress perfusion cardiac magnetic resonance with suspect of myocardial ischemia, were prospectively enrolled into the study. Four patients were disqualified, and thirty patients were included in the final analysis. Using both modified look-locker inversion recovery and shortened modified look-locker inversion recovery, midventricular short axis slices of T1 maps were acquired at rest and during peak adenosine stress before gadolinium administration. Then, they were divided into six segments according to the 17-segment model proposed by the American Heart Association, and separate measurements were made from each segment. Mean rest and mean stress T1 values of remote, ischemic, and infarcted myocardium were calculated individually per subject. During adenosine administration, patients' heart rates and blood pressures are measured and recorded every one minute. Adenosine stress perfusion images were examined for the presence of splenic switch-off. Results: There was a significant difference between rest and stress T1 values of remote myocardium in both modified look-locker inversion recovery and shortened modified look-locker inversion recovery (p<0.001). In both modified look-locker inversion recovery and shortened modified look-locker inversion recovery there was no significant correlation between T1 reactivity and heart rates response (modified look-locker inversion recovery p=0.30, shortened modified look-locker inversion recovery p=0.10), blood pressures response (modified look-locker inversion recovery p=0.062, shortened modified look-locker inversion recovery p=0.078), splenic perfusion (modified look-locker inversion recovery p=0.35, shortened modified look-locker inversion recovery p=0.053). There was no statistically significant difference between modified look-locker inversion recovery and shortened modified look-locker inversion recovery regarding T1 reactivity of remote (p=0.330), ischemic (p=0.068), and infarcted (p=0.116) myocardium. Conclusion: T1 reactivity is independent of the other stress response signs and modified look-locker inversion recovery and shortened modified look-locker inversion recovery do not differ in terms of T1 reactivity.


Asunto(s)
Adenosina/administración & dosificación , Imagen por Resonancia Magnética/normas , Imagen de Perfusión Miocárdica/normas , Adenosina/farmacología , Adenosina/uso terapéutico , Anciano , Análisis de Varianza , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/fisiopatología , Estudios Transversales , Prueba de Esfuerzo/métodos , Prueba de Esfuerzo/normas , Prueba de Esfuerzo/estadística & datos numéricos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Imagen de Perfusión Miocárdica/métodos , Imagen de Perfusión Miocárdica/estadística & datos numéricos , Valor Predictivo de las Pruebas
19.
Clin Transl Radiat Oncol ; 22: 44-49, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32211520

RESUMEN

BACKGROUND AND PURPOSE: Oxygen-enhanced magnetic resonance imaging (MRI) and T1-mapping was used to explore its effectiveness as a prognostic imaging biomarker for chemoradiotherapy outcome in anal squamous cell carcinoma. MATERIALS AND METHODS: T2-weighted, T1 mapping, and oxygen-enhanced T1 maps were acquired before and after 8-10 fractions of chemoradiotherapy and examined whether the oxygen-enhanced MRI response relates to clinical outcome. Patient response to treatment was assessed 3 months following completion of chemoradiotherapy. A mean T1 was extracted from manually segmented tumour regions of interest and a paired two-tailed t-test was used to compare changes across the patient population. Regions of subcutaneous fat and muscle tissue were examined as control ROIs. RESULTS: There was a significant increase in T1 of the tumour ROIs across patients following the 8-10 fractions of chemoradiotherapy (paired t-test, p < 0.001, n = 7). At baseline, prior to receiving chemoradiotherapy, there were no significant changes in T1 across patients from breathing oxygen (n = 9). In the post-chemoRT scans (8-10 fractions), there was a significant decrease in T1 of the tumour ROIs across patients when breathing 100% oxygen (paired t-test, p < 0.001, n = 8). Out of the 12 patients from which we successfully acquired a visit 1 T1-map, only 1 patient did not respond to treatment, therefore, we cannot correlate these results with clinical outcome. CONCLUSIONS: These clinical data demonstrate feasibility and potential for T1-mapping and oxygen enhanced T1-mapping to indicate perfusion or treatment response in tumours of this nature. These data show promise for future work with a larger cohort containing more non-responders, which would allow us to relate these measurements to clinical outcome.

20.
Magn Reson Med Sci ; 19(4): 345-350, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31956176

RESUMEN

PURPOSE: Modified Look-Locker inversion recovery (MOLLI) using a 5s(3s)3s scheme is robust to tachycardia, but some errors are occasionally observed in myocardial T1 mapping. We sought to evaluate the relationship between measurement errors in T1 mapping and heart rate (HR) using a confidence map. METHODS: We enrolled 69 male patients with normal native T1 values of the septal myocardium measured by a 5s(3s)3s MOLLI. The degree of measurement errors in the septal myocardium was assessed by two independent observers on a confidence map using a 4-point scale: 0, no errors; 1, errors located on the myocardial contour; 2, errors extended into the myocardial contour; and 3, errors extended into the midwall. We compared the scores of measurement errors and the average, maximum, minimum or variability of the HR indicated during the MOLLI scan (iHR), image phases of MOLLI or left ventricular ejection fraction (LVEF). RESULTS: Patients with score >1 for the septal myocardium had significantly lower minimum iHR than those with a score ≤1 (P < 0.01; 49.8 ± 10.1 vs. 59.6 ± 9.7 beat per min). CONCLUSION: The confidence map shows more measurement errors in patients with lower minimum iHR. The myocardial T1 values should be measured carefully in patients with bradycardia during MOLLI scanning.


Asunto(s)
Frecuencia Cardíaca , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Miocardio/patología , Volumen Sistólico , Función Ventricular Izquierda , Adulto , Bradicardia/diagnóstico por imagen , Errores Diagnósticos , Tabiques Cardíacos/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...