Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140137

RESUMEN

Mechanotransduction, which is the integration of mechanical signals from the cell's external environment to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that the translocation of the transcriptional regulators YAP/TAZ and MRTF into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which lead to a class of diseases known as laminopathies. Oscillations in circadian proteins are substantially weaker in populations of cells with in silico mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states. However, by reducing substrate stiffness, we were able to restore normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and this crosstalk can be leveraged to rescue the circadian clock in disease states.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39163574

RESUMEN

Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-ß1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-ß1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.

3.
Int J Cancer ; 155(7): 1303-1315, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38898604

RESUMEN

Metastatic cutaneous melanoma is a fatal skin cancer. Resistance to targeted and immune therapies limits the benefits of current treatments. Identifying and adding anti-resistance agents to current treatment protocols can potentially improve clinical responses. Myocardin-related transcription factor (MRTF) is a transcriptional coactivator whose activity is indirectly regulated by actin and the Rho family of GTPases. We previously demonstrated that development of BRAF inhibitor (BRAFi) resistance frequently activates the Rho/MRTF pathway in human and mouse BRAFV600E melanomas. In clinical trials, pretreatment with BRAFi reduces the benefit of immune therapies. We aimed to test the efficacy of concurrent treatment with our MRTF pathway inhibitor CCG-257081 and anti-PD1 in vivo and to examine its effects on the melanoma immune microenvironment. Because MRTF pathway activation upregulates the expression of immune checkpoint inhibitor genes/proteins, we asked whether CCG-257081 can improve the response to immune checkpoint blockade. CCG-257081 reduced the expression of PDL1 in BRAFi-resistant melanoma cells and decreased surface PDL1 levels on both BRAFi-sensitive and -resistant melanoma cells. Using our recently described murine vemurafenib-resistant melanoma model, we found that CCG-257081, in combination with anti-PD1 immune therapy, reduced tumor growth and increased survival. Moreover, anti-PD1/CCG-257081 co-treatment increased infiltration of CD8+ T cells and B cells into the tumor microenvironment and reduced tumor-associated macrophages. Here, we propose CCG-257081 as an anti-resistance and immune therapy-enhancing anti-melanoma agent.


Asunto(s)
Antígeno B7-H1 , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Melanoma , Proteínas Proto-Oncogénicas B-raf , Neoplasias Cutáneas , Microambiente Tumoral , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Femenino , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
4.
Eur J Cell Biol ; 103(2): 151424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823166

RESUMEN

Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The main purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that pharmacological TPM3.1 inhibition or siRNA knockdown causes F-actin reorganization from stress fibers back to cortical F-actin and causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, pharmacological CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition, as well as TPM3.1 knockdown, reduces nuclear localization of myocardin related transcription factor, which suppresses dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.


Asunto(s)
Actinas , Desdiferenciación Celular , Condrocitos , Fibras de Estrés , Tropomiosina , Condrocitos/metabolismo , Condrocitos/citología , Fibras de Estrés/metabolismo , Animales , Actinas/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética , Fenotipo , Células Cultivadas , Proteína de Unión al GTP cdc42/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Transactivadores/metabolismo , Transactivadores/genética
5.
J Cell Sci ; 137(13)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841882

RESUMEN

Myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF), and thereby regulate cytoskeletal gene expression in response to actin dynamics. MRTFs have also been implicated in transcription of heat shock protein (HSP)-encoding genes in fly ovaries, but the mechanisms remain unclear. Here, we demonstrate that, in mammalian cells, MRTFs are dispensable for gene induction of HSP-encoding genes. However, the widely used small-molecule inhibitors of the MRTF-SRF transcription pathway, derived from CCG-1423, also efficiently inhibit gene transcription of HSP-encoding genes in both fly and mammalian cells in the absence of MRTFs. Quantifying RNA synthesis and RNA polymerase distribution demonstrates that CCG-1423-derived compounds have a genome-wide effect on transcription. Indeed, tracking nascent transcription at nucleotide resolution reveals that CCG-1423-derived compounds reduce RNA polymerase II elongation, and severely dampen the transcriptional response to heat shock. The effects of CCG-1423-derived compounds therefore extend beyond the MRTF-SRF pathway into nascent transcription, opening novel opportunities for their use in transcription research.


Asunto(s)
Transcripción Genética , Animales , Transcripción Genética/efectos de los fármacos , ARN Polimerasa II/metabolismo , ARN/metabolismo , ARN/genética , Ratones , Humanos , Transactivadores/metabolismo , Transactivadores/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/genética
6.
Cell Rep ; 43(5): 114177, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691453

RESUMEN

Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Complejo Mediador , Desarrollo de Músculos , Regeneración , Células Madre , Animales , Ratones , Desarrollo de Músculos/genética , Células Madre/metabolismo , Células Madre/citología , Complejo Mediador/metabolismo , Complejo Mediador/genética , Músculo Esquelético/metabolismo , Transcripción Genética , Ratones Endogámicos C57BL , Transactivadores/metabolismo , Transactivadores/genética
7.
Cells ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38474356

RESUMEN

RhoA-regulated gene transcription by serum response factor (SRF) and its transcriptional cofactor myocardin-related transcription factors (MRTFs) signaling pathway has emerged as a promising therapeutic target for pharmacological intervention in multiple diseases. Altered mitochondrial metabolism is one of the major hallmarks of cancer, therefore, this upregulation is a vulnerability that can be targeted with Rho/MRTF/SRF inhibitors. Recent advances identified a novel series of oxadiazole-thioether compounds that disrupt the SRF transcription, however, the direct molecular target of these compounds is unclear. Herein, we demonstrate the Rho/MRTF/SRF inhibition mechanism of CCG-203971 and CCG-232601 in normal cell lines of human lung fibroblasts and mouse myoblasts. Further studies investigated the role of these molecules in targeting mitochondrial function. We have shown that these molecules hyperacetylate histone H4K12 and H4K16 and regulate the genes involved in mitochondrial function and dynamics. These small molecule inhibitors regulate mitochondrial function as a compensatory mechanism by repressing oxidative phosphorylation and increasing glycolysis. Our data suggest that these CCG molecules are effective in inhibiting all the complexes of mitochondrial electron transport chains and further inducing oxidative stress. Therefore, our present findings highlight the therapeutic potential of CCG-203971 and CCG-232601, which may prove to be a promising approach to target aberrant bioenergetics.


Asunto(s)
Factor de Respuesta Sérica , Factores de Transcripción , Ratones , Humanos , Animales , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal , Línea Celular , Mitocondrias/metabolismo
8.
Genes Cells ; 29(1): 99-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009531

RESUMEN

Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of SCAI is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter SCAI mRNA levels. We therefore investigated the effects of BDNF on SCAI mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured SCAI variant mRNA after BDNF stimulation. Both SCAI variant 1 and total SCAI mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in SCAI mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes SCAI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neuronas/metabolismo , Regulación de la Expresión Génica , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Invasividad Neoplásica , Células Cultivadas
9.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137053

RESUMEN

MICAL2 is an actin-regulatory protein that functions through redox modification of actin. Nuclear localized MICAL2 triggers the disassembly of nuclear actin, which subsequently leads to nuclear retention of the actin-binding transcriptional coregulator myocardin-related transcription factor-A (MRTF-A), which leads to the activation of serum response factor (SRF)/MRTF-A-dependent gene transcription. In this study, we show that the secreted signaling protein GAS6 (growth-arrest specific 6) and its cognate receptor Axl, a transmembrane tyrosine kinase, also induce the activation of SRF/MRTF-A and their downstream target genes. We find that serum-induced SRF/MRTF-A-dependent gene expression can be blocked, in part, by the inhibition of Axl signaling. Furthermore, we find that Gas6/Axl-induced SRF/MRTF-A-dependent transcription is dependent on MICAL2. Gas6/Axl promotes cell invasion, which is blocked by MICAL2 knockdown, suggesting that MICAL2 promotes cytoskeletal effects of the Gas6/Axl pathway. We find that Gas/6/Axl signaling promotes the nuclear localization of MICAL2, which may contribute to the ability of Gas6/SRF to augment SRF/MRTF-A-dependent gene transcription. The physiological significance of the Gas6/Axl-MICAL2 signaling pathway described here is supported by the marked gene expression correlation across a broad array of different cancers between MICAL2 and Axl and Gas6, as well as the coexpression of these genes and the known SRF/MRTF-A target transcripts. Overall, these data reveal a new link between Gas6/Axl and SRF/MRTF-A-dependent gene transcription and link MICAL2 as a novel effector of the Gas6/Axl signaling pathway.


Asunto(s)
Actinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Actinas/genética , Actinas/metabolismo , Transducción de Señal , Transcripción Genética
10.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106134

RESUMEN

Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that TPM3.1 inhibition causes F-actin reorganization from stress fibers back to cortical F-actin and also causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition reduces nuclear localization of myocardin related transcription factor, which is known to suppress dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.

11.
Cell Struct Funct ; 48(2): 199-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899269

RESUMEN

We have recently demonstrated that a LIM domain protein, cysteine and glycine-rich protein 2 (CSRP2 [CRP2]), plays a vital role in the functional expression of myofibroblasts and cancer-associated fibroblasts. CRP2 binds directly to myocardin-related transcription factors (MRTF [MRTF-A or MRTF-B]) and serum response factor (SRF) to stabilize the MRTF/SRF/CArG-box complex, leading to the expression of smooth muscle cell (SMC) genes such as α-smooth muscle actin (α-SMA) and collagens. These are the marker genes for myofibroblasts. Here, we show that the adhesion of cultured human skin fibroblasts (HSFs) to collagen reduces the myofibroblastic features. HSF adhesion to collagen suppresses the expression of CRP2 and CSRP2-binding protein (CSRP2BP [CRP2BP]) and reduces the expression of SMC genes. Although CRP2BP is known as an epigenetic factor, we find that CRP2BP also acts as an adaptor protein to enhance the function of CRP2 mentioned above. This CRP2BP function does not depend on its histone acetyltransferase activity. We also addressed the molecular mechanism of the reduced myofibroblastic features of HSFs on collagen. HSF adhesion to collagen inhibits the p38MAPK-mediated pathway, and reducing the p38MAPK activity decreases the expression of CRP2 and SMC genes. Thus, the activation of p38MAPK is critical for the myofibroblastic features. We also show evidence that CRP2 plays a role in the myofibroblastic transition of retinal pigment epithelial cells (RPEs). Like HSFs, such phenotypic modulation of RPEs depends on the p38MAPK pathway.Key words: CRP2, p38MAPK, MRTF, myofibroblasts, retinal pigment epithelial cells.


Asunto(s)
Fibroblastos , Miofibroblastos , Humanos , Miocitos del Músculo Liso , Colágeno , Pigmentos Retinianos , Células Cultivadas
13.
FASEB J ; 37(7): e23005, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37289107

RESUMEN

Fibroblast accumulation and extracellular matrix (ECM) deposition are common critical steps for the progression of organ fibrosis, but the precise molecular mechanisms remain to be fully investigated. We have previously demonstrated that lysophosphatidic acid contributes to organ fibrosis through the production of connective tissue growth factor (CTGF) via actin cytoskeleton-dependent signaling, myocardin-related transcription factor family (MRTF) consisting of MRTF-A and MRTF-B-serum response factor (SRF) pathway. In this study, we investigated the role of the MRTF-SRF pathway in the development of renal fibrosis, focusing on the regulation of ECM-focal adhesions (FA) in renal fibroblasts. Here we showed that both MRTF-A and -B were required for the expressions of ECM-related molecules such as lysyl oxidase family members, type I procollagen and fibronectin in response to transforming growth factor (TGF)-ß1 . TGF-ß1 -MRTF-SRF pathway induced the expressions of various components of FA such as integrin α subunits (αv , α2 , α11 ) and ß subunits (ß1 , ß3 , ß5 ) as well as integrin-linked kinase (ILK). On the other hand, the blockade of ILK suppressed TGF-ß1 -induced MRTF-SRF transcriptional activity, indicating a mutual relationship between MRTF-SRF and FA. Myofibroblast differentiation along with CTGF expression was also dependent on MRTF-SRF and FA components. Finally, global MRTF-A deficient and inducible fibroblast-specific MRTF-B deficient mice (MRTF-AKO BiFBKO mice) are protected from renal fibrosis with adenine administration. Renal expressions of ECM-FA components and CTGF as well as myofibroblast accumulation were suppressed in MRTF-AKO BiFBKO mice. These results suggest that the MRTF-SRF pathway might be a therapeutic target for renal fibrosis through the regulation of components forming ECM-FA in fibroblasts.


Asunto(s)
Fibroblastos , Enfermedades Renales , Factores de Transcripción , Animales , Ratones , Actinas/metabolismo , Fibroblastos/metabolismo , Fibrosis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
14.
Biol Pharm Bull ; 46(8): 1141-1144, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286514

RESUMEN

Megakaryoblastic leukemia 2 (MKL2)/myocardin-related transcription factor-B (MRTFB) is a serum response factor (SRF) cofactor that is enriched in the brain and controls SRF target genes and neuronal morphology. There are at least four isoforms of MKL2/MRTFB. Among these, MKL2/MRTFB isoform 1 and spliced neuronal long isoform of SRF transcriptional coactivator (SOLOIST)/MRTFB isoform 4 (MRTFB i4) are highly expressed in neurons. Although, when overexpressed in neurons, isoform 1 and SOLOIST/MRTFB i4 have opposing effects on dendritic morphology and differentially regulate SRF target genes, it is unknown how endogenous SOLOIST/MRTFB i4 regulates gene expression. Using isoform-specific knockdown, we investigated the role of endogenous SOLOST/MRTFB i4 in regulating the expression of other MKL2/MRTFB isoforms and SRF-target genes in Neuro-2a cells. Knockdown of SOLOIST/MRTFB i4 downregulated SOLOIST/MRTFB i4, while it upregulated isoform 1 without affecting isoform 3. Knockdown of SOLOIST/MRTFB i4 downregulated the SRF target immediate early genes egr1 and Arc, while it upregulated c-fos. Double knockdown of isoform 1 and SOLOIST/MRTFB i4 inhibited c-fos expression. Taken together, our findings in Neuro-2a cells suggest that endogenous SOLOIST/MRTFB i4 positively regulates egr1 and Arc expression. In addition, endogenous SOLOIST/MRTFB i4 may negatively regulate c-fos expression, possibly by downregulating isoform 1 in Neuro-2a cells.


Asunto(s)
Genes Inmediatos-Precoces , Transactivadores , Transactivadores/genética , Transactivadores/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética
15.
Oral Dis ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154247

RESUMEN

BACKGROUND: Serum response factor (SRF) and myocardial-associated transcription factor-A (MRTF-A) had different regulatory effects on the tumorigenesis and development in different cancers. However, the role of MRTF-A/SRF in oral squamous cell carcinoma (OSCC) remains to be determined. METHODS: CCK-8 assay, cell scratch experiment, and transwell invasion assay were conducted to investigate the effects of MRTF-A/SRF on biological behavior of OSCC cells. The expression pattern and prognostic value of MRTF-A/SRF in OSCC were analyzed based on cBioPortal website and TCGA database. Protein-protein interaction network was visualized to identify protein functions. Go and KEGG pathway analyses were performed to investigate related pathways. The effect of MRTF-A/SRF on epithelial-mesenchymal transformation (EMT) of OSCC cells was explored by western blot assay. RESULTS: Overexpression of MRTF-A/SRF inhibited the proliferation, migration, and invasion of OSCC cells in vitro. High expression of SRF was related to better prognosis of OSCC patients on hard palate, alveolar ridge, and oral tongue. Besides, overexpression of MRTF-A/SRF inhibited the EMT of OSCC cells. CONCLUSION: SRF was closely related to the prognosis of OSCC. High expression of SRF and its co-activator MRTF-A inhibited proliferation, migration, and invasion of OSCC cells in vitro, possibly via EMT suppression.

16.
Front Mol Biosci ; 10: 1112653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006615

RESUMEN

Osteoarthritis (OA) is a chronic joint disease with increasing prevalence. Chondrocytes (CHs) are highly differentiated end-stage cells with a secretory phenotype that keeps the extracellular matrix (ECM) balanced and the cartilage environment stable. Osteoarthritis dedifferentiation causes cartilage matrix breakdown, accounting for one of the key pathogenesis of osteoarthritis. Recently, the activation of transient receptor potential ankyrin 1 (TRPA1) was claimed to be a risk factor in osteoarthritis by causing inflammation and extracellular matrix degradation. However, the underlying mechanism is still unknown. Due to its mechanosensitive property, we speculated that the role of TRPA1 activation during osteoarthritis is matrix stiffness-dependent. In this study, we cultured the chondrocytes from patients with osteoarthritis on stiff vs. soft substrates, treated them with allyl isothiocyanate (AITC), a transient receptor potential ankyrin 1 agonist, and compared the chondrogenic phenotype, containing cell shape, F-actin cytoskeleton, vinculin, synthesized collagen profiles and their transcriptional regulatory factor, and inflammation-related interleukins. The data suggest that allyl isothiocyanate treatment activates transient receptor potential ankyrin 1 and results in both positive and harmful effects on chondrocytes. In addition, a softer matrix could help enhance the positive effects and alleviate the harmful ones. Thus, the effect of allyl isothiocyanate on chondrocytes is conditionally controllable, which could be associated with transient receptor potential ankyrin 1 activation, and is a promising strategy for osteoarthritis treatment.

17.
Biomedicines ; 11(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36979893

RESUMEN

The angiogenic potential of mesenchymal stem cells (MSCs) is critical for adult vascular regeneration and repair, which is regulated by various growth factors and cytokines. In the current study, we report that knockdown SUMO-specific peptidase 1 (SENP1) stimulated the SUMOylation of MRTF-A and prevented its translocation into the nucleus, leading to downregulation of the cytokine and angiogenic factor CCN1, which significantly impacted MSC-mediated angiogenesis and cell migration. Further studies showed that SENP1 knockdown also suppressed the expression of a chemokine receptor CXCR4, and overexpression of CXCR4 could partially abrogate MRTF-A SUMOylation and reestablish the CCN1 level. Mutation analysis confirmed that SUMOylation occurred on three lysine residues (Lys-499, Lys-576, and Lys-624) of MRTF-A. In addition, SENP1 knockdown abolished the synergistic co-activation of CCN1 between MRTF-A and histone acetyltransferase p300 by suppressing acetylation on histone3K9, histone3K14, and histone4. These results revealed an important signaling pathway to regulate MSC differentiation and angiogenesis by MRTF-A SUMOylation involving cytokine/chemokine activities mediated by CCN1 and CXCR4, which may potentially impact a variety of cellular processes such as revascularization, wound healing, and progression of cancer.

18.
Dis Model Mech ; 16(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36808468

RESUMEN

Alterations in the expression or function of cell adhesion molecules have been implicated in all steps of tumor progression. Among those, P-cadherin is highly enriched in basal-like breast carcinomas, playing a central role in cancer cell self-renewal, collective cell migration and invasion. To establish a clinically relevant platform for functional exploration of P-cadherin effectors in vivo, we generated a humanized P-cadherin Drosophila model. We report that actin nucleators, Mrtf and Srf, are main P-cadherin effectors in fly. We validated these findings in a human mammary epithelial cell line with conditional activation of the SRC oncogene. We show that, prior to promoting malignant phenotypes, SRC induces a transient increase in P-cadherin expression, which correlates with MRTF-A accumulation, its nuclear translocation and the upregulation of SRF target genes. Moreover, knocking down P-cadherin, or preventing F-actin polymerization, impairs SRF transcriptional activity. Furthermore, blocking MRTF-A nuclear translocation hampers proliferation, self-renewal and invasion. Thus, in addition to sustaining malignant phenotypes, P-cadherin can also play a major role in the early stages of breast carcinogenesis by promoting a transient boost of MRTF-A-SRF signaling through actin regulation.


Asunto(s)
Actinas , Transactivadores , Humanos , Actinas/metabolismo , Transactivadores/metabolismo , Transducción de Señal , Cadherinas , Células Epiteliales/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
19.
Biol Pharm Bull ; 46(4): 636-639, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801840

RESUMEN

Serum response factor (SRF) is a transcription factor that plays essential roles in multiple brain functions in concert with SRF cofactors such as ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which comprises MKL1/MRTFA and MKL2/MRTFB. Here, we stimulated primary cultured rat cortical neurons with brain-derived neurotrophic factor (BDNF) and investigated the levels of SRF and SRF cofactor mRNA expression. We found that SRF mRNA was transiently induced by BDNF, whereas the levels of SRF cofactors were differentially regulated: mRNA expression of Elk1, a TCF family member, and MKL1/MRTFA were unchanged, while in contrast, mRNA expression of MKL2/MRTFB was transiently decreased. Inhibitor experiments revealed that BDNF-mediated alteration in mRNA levels detected in this study was mainly due to the extracellular signal-regulated protein kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Collectively, BDNF mediates the reciprocal regulation of SRF and MKL2/MRTFB at the mRNA expression level through ERK/MAPK, which may fine-tune the transcription of SRF target genes in cortical neurons. Accumulating evidence regarding the alteration of SRF and SRF cofactor levels detected in several neurological disorders suggests that the findings of this study might also provide novel insights into valuable therapeutic strategies for the treatment of brain diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Factor de Respuesta Sérica , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo
20.
Fitoterapia ; 165: 105398, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36563762

RESUMEN

Piper longum has a specific aroma and spicy taste. In addition to edible value, current studies have shown that piper longum also has pharmacological activities such as anti-platelet aggregation, anti-inflammation, anti-cancer, anti-diabetes and anti-depression. Piperlongumine is an alkaloid isolated from Piper longum. Based on our previous studies, four Piperlongumine analogs were synthesized, and their anti-platelet aggregation activities were evaluated. Among them, compound 8 has the strongest anti-platelet aggregation activity. Therefore, compound 8 was docked with stroke-related protein targets, and it was found that compound 8 had good binding affinity to MRTF-A complex and Bcl-2. Through animal experiments, it was found that compound 8 could significantly improve the pathological damage of brain tissue after ischemia and could increase the expression of MRTF-A and Bcl-2 in cerebral cortex in rats. These results suggest that compound 8 may have a good inhibitory effect on apoptosis and tissue structurel disorders induced by cerebral ischemia-reperfusion, so as to reduce the injury caused by ischemic stroke.


Asunto(s)
Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratas , Animales , Estructura Molecular , Proteínas Proto-Oncogénicas c-bcl-2 , Accidente Cerebrovascular/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...