Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.961
Filtrar
1.
Domest Anim Endocrinol ; 90: 106890, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39366130

RESUMEN

This study evaluated the efficiency of in vitro culture of preantral follicles (PAF) in a commonly used medium for mesenchymal stem cell (MSC) culture. Parameters assessed included follicle survival, growth, stromal cell density, levels of reduced thiols and reactive oxygen species, epigenetic changes, cell apoptosis, and mRNA abundance. Caprine ovarian tissues were cultured for 1 or 7 days in either PAF or MSC-common media, with uncultured tissues serving as controls. The MSC medium exhibited increased follicular survival and growth and remodeled stromal density potentially through the regulation of oxidative stress and epigenetic changes compared to the PAF medium. In conclusion, our results highlight the importance of the MSC medium in enhancing follicular survival and growth, changing the stromal cell density, as well as in regulating the medium oxidative stress and epigenetic changes during the in vitro culture of caprine PAF.

2.
ACS Synth Biol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375864

RESUMEN

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.

3.
Trends Biotechnol ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39393937

RESUMEN

Cell-based therapies for cartilage repair, including autologous chondrocyte implantation and allogeneic stem cell treatments, show great promise but face challenges due to high costs and regulatory hurdles. This review summarizes available and investigational products, focusing on allogeneic therapies and the impact of diverse regulatory landscapes on their clinical translation.

4.
BMC Cardiovasc Disord ; 24(1): 547, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39385107

RESUMEN

BACKGROUND: Myocardial infarction (MI) remains a significant global health concern, characterized by cardiomyocyte apoptosis and adverse ventricular remodeling. Nevertheless, the interplay between exosomal miR-21-5p and Yes-associated protein 1 (YAP1) in the context of MI remains unexplored. METHODS: Rat mesenchymal stem cells (MSCs) and H9c2 cardiomyocytes were cultured, characterized, and instrumental in our experiments. Exosomes were meticulously isolated, and their identity confirmed. The internalization of these exosomes by H9c2 cells was assessed, while RNA and protein expression were quantified using Quantitative Real-Time PCR and Western blot, respectively. MTT assay was implemented for cell viability, and apoptosis was evaluated via flow cytometric analysis. To elucidate gene interactions, we conducted microarray profiling of miRNA expression, dual luciferase reporter assays, and RNA Immunoprecipitation. RESULTS: MSC-derived exosomes exhibited a remarkable capacity to attenuate hypoxia-induced inflammation and apoptosis in H9c2 cells. Notably, these exosomes significantly upregulated miR-21-5p levels within H9c2 cells, and the abrogation of miR-21-5p function abated their protective effects. Through computational analysis, we unveiled a miR-21-5p binding site in the 3'UTR of YAP1, which directly inhibited YAP1 expression. Importantly, the inhibition of YAP1 effectively reinstated the protective effects of exosomes in cells with impaired exosomal miR-21-5p. CONCLUSION: This study underscores the pivotal role played by MSC-derived exosomes in safeguarding against MI, primarily by mediating the transfer of miR-21-5p, which targets YAP1 signaling pathways. CLINICAL TRIAL NUMBER: N/A.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , Proteínas Señalizadoras YAP , Exosomas/metabolismo , Exosomas/genética , Proteínas Señalizadoras YAP/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Línea Celular , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratas , Ratas Sprague-Dawley , Masculino , Trasplante de Células Madre Mesenquimatosas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Regiones no Traducidas 3'
5.
Stem Cell Res Ther ; 15(1): 288, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256816

RESUMEN

BACKGROUND: Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS: We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS: There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS: Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Orina , Humanos , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Orina/citología , Masculino , Femenino , Células Cultivadas , Adulto , Proliferación Celular , Persona de Mediana Edad , Diferenciación Celular
6.
Regen Ther ; 26: 599-610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39253597

RESUMEN

Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.

7.
Front Netw Physiol ; 4: 1441294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258030

RESUMEN

It is increasingly understood that the epilepsies are characterized by network pathology that can span multiple spatial and temporal scales. Recent work indicates that infraslow (<0.2 Hz) envelope correlations may form a basis for distant spatial coupling in the brain. We speculated that infraslow correlation structure may be preserved even with some time lag between signals. To this end, we studied intracranial EEG (icEEG) data collected from 22 medically refractory epilepsy patients. For each patient, we selected hour-long background, awake icEEG epochs before and after antiseizure medication (ASM) taper. For each epoch, we selected 5,000 random electrode contact pairs and estimated magnitude-squared coherence (MSC) below 0.15 Hz of band power time-series in the traditional EEG frequency bands. Using these same contact pairs, we shifted one signal of the pair by random durations in 15-s increments between 0 and 300 s. We aggregated these data across all patients to determine how infraslow MSC varies with duration of lag. We further examined the effect of ASM taper on infraslow correlation structure. We also used surrogate data to empirically characterize MSC estimator and to set optimal parameters for estimation specifically for the study of infraslow activity. Our empirical analysis of the MSC estimator showed that hour-long segments with MSC computed using 3-min windows with 50% overlap was sufficient to capture infraslow envelope correlations while minimizing estimator bias and variance. The mean MSC decreased monotonically with increasing time lag until 105 s of lag, then plateaued between 106 and 300 s. Significantly nonzero infraslow envelope MSC was preserved in all frequency bands until about 1 min of time lag, both pre- and post-ASM taper. We also saw a slight, but significant increase in infraslow MSC post-ASM taper, consistent with prior work. These results provide evidence for the feasibility of examining infraslow activity via its modulation of higher-frequency activity in the absence of DC-coupled recordings. The use of surrogate data also provides a general methodology for benchmarking measures used in network neuroscience studies. Finally, our study points to the clinical relevance of infraslow activity in assessing seizure risk.

8.
Cytotherapy ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39306795

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) hold promise for cell-based therapies due to their ability to stimulate tissue repair and modulate immune responses. Umbilical cord-derived MSCs from Wharton jelly (WJ) offer advantages such as low immunogenicity and potent immune modulatory effects. However, ensuring consistent quality and safety throughout their manufacturing process remains critical. RNA sequencing (RNA-seq) emerges as a crucial tool for assessing genetic stability and expression dynamics in cell-based therapeutic products. METHODS: We examined the secretome and transcriptome of WJ-MSC signatures throughout Good Manufacturing Practice (GMP) production, focusing on the performance of total RNA or Massive Analysis of cDNA Ends (MACE) sequencing. RESULTS: Through extensive transcriptomic analysis, we demonstrated consistent stability of WJ-MSC expression signatures across different manufacturing stages. Notably, MACE-seq showed improved identification of key expression patterns related to senescence and immunomodulation. CONCLUSIONS: These findings highlight the potential of MACE-seq as a quality assessment tool for WJ-MSC-based therapies, ensuring their efficacy and safety in clinical applications. Importantly, MACE-seq demonstrated its value in characterizing WJ-MSC-derived products, offering insights that traditional assays cannot provide.

9.
Cells ; 13(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39329762

RESUMEN

BACKGROUND: Despite promise in preclinical models of acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC) have failed to translate to therapeutic benefit in clinical trials. The MSC is a live cell medicine and interacts with the patient's disease state. Here, we explored this interaction, seeking to devise strategies to enhance MSC therapeutic function. METHODS: Human bone-marrow-derived MSCs were exposed to lung homogenate from healthy and E. coli-induced ARDS rat models. Apoptosis and functional assays of the MSCs were performed. RESULTS: The ARDS model showed reduced arterial oxygenation, decreased lung compliance and an inflammatory microenvironment compared to controls. MSCs underwent more apoptosis after stimulation by lung homogenate from controls compared to E. coli, which may explain why MSCs persist longer in ARDS subjects after administration. Changes in expression of cell surface markers and cytokines were associated with lung homogenate from different groups. The anti-microbial effects of MSCs did not change with the stimulation. Moreover, the conditioned media from lung-homogenate-stimulated MSCs inhibited T-cell proliferation. CONCLUSIONS: These findings suggest that the ARDS microenvironment plays an important role in the MSC's therapeutic mechanism of action, and changes can inform strategies to modulate MSC-based cell therapy for ARDS.


Asunto(s)
Microambiente Celular , Pulmón , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Pulmón/patología , Ratas , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/metabolismo , Neumonía/patología , Neumonía/metabolismo , Neumonía/terapia , Masculino , Apoptosis , Proliferación Celular , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Escherichia coli , Citocinas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
Front Med (Lausanne) ; 11: 1451297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328312

RESUMEN

Objective: Spinal cord injury (SCI) is a serious condition that can lead to partial or complete paraplegia or tetraplegia. Currently, there are few therapeutic options for these conditions, which are mainly directed toward the acute phase, such as surgical intervention and high-dose steroid administration. Mesenchymal stromal cells (MSC) have been shown to improve neurological function following spinal cord injury. The aim of the study was to evaluate the safety, feasibility, and potential efficacy of MSC transplantation in patients with cervical traumatic SCI. Methods: We included seven subjects with chronic traumatic SCI (> 1 year) at the cervical level, classified as American Spinal Cord Injury Association impairment scale (AIS) grade A. Subjects received two doses of autologous bone marrow derived MSC, the first by direct injection into the lesion site after hemilaminectomy and the second three months later by intrathecal injection. Neurologic evaluation, spinal magnetic resonance imaging (MRI), urodynamics, and life quality questionnaires were assessed before and after treatment. Results: Cell transplantation was safe without severe or moderate adverse effects, and the procedures were well tolerated. Neurological evaluation revealed discrete improvements in sensitivity below the lesion level, following treatment. Five subjects showed some degree of bilateral sensory improvement for both superficial and deep mechanical stimuli compared to the pretreatment profile. No significant alterations in bladder function were observed during this study. Conclusion: Transplantation of autologous MSC in patients with chronic cervical SCI is a safe and feasible procedure. Further studies are required to confirm the efficacy of this therapeutic approach. Clinical trial registration: https://clinicaltrials.gov/study/NCT02574572, identifier NCT02574572.

11.
Mater Today Bio ; 28: 101254, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39328787

RESUMEN

Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity in vitro. The multifunctional scaffold could potentially support stem cell in vivo and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.

12.
J Tissue Eng ; 15: 20417314241268917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39329066

RESUMEN

Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/ß-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).

13.
Can J Stat ; 52(3): 900-923, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39319323

RESUMEN

When analyzing data combined from multiple sources (e.g., hospitals, studies), the heterogeneity across different sources must be accounted for. In this paper, we consider high-dimensional linear regression models for integrative data analysis. We propose a new adaptive clustering penalty (ACP) method to simultaneously select variables and cluster source-specific regression coefficients with sub-homogeneity. We show that the estimator based on the ACP method enjoys a strong oracle property under certain regularity conditions. We also develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) for parameter estimation. We conduct simulation studies to compare the performance of the proposed method to three existing methods (a fused LASSO with adjacent fusion, a pairwise fused LASSO, and a multi-directional shrinkage penalty method). Finally, we apply the proposed method to the multi-center Childhood Adenotonsillectomy Trial to identify sub-homogeneity in the treatment effects across different study sites.


Insérer votre résumé ici. We will supply a French abstract for those authors who can't prepare it themselves.

14.
Cells ; 13(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39329740

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.


Asunto(s)
Inmunidad Adaptativa , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología , Células Madre Mesenquimatosas/inmunología , Animales
15.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337560

RESUMEN

The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Enfermedades Neurodegenerativas , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/diagnóstico , Barrera Hematoencefálica/metabolismo
17.
Infect Dis Model ; 9(4): 1301-1328, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39309400

RESUMEN

During an epidemic, such as the COVID-19 pandemic, policy-makers are faced with the decision of implementing effective, yet socioeconomically costly intervention strategies, such as school and workplace closure, physical distancing, etc. In this study, we propose a rigorous definition of epidemiological strategies. In addition, we develop a scheme for comparing certain epidemiological strategies, with the goal of providing policy-makers with a tool for their systematic comparison. Then, we put the suggested scheme to the test by employing an age-based epidemiological compartment model introduced in Bitsouni et al. (2024), coupled with data from the literature, in order to compare the effectiveness of age-based and horizontal interventions. In general, our findings suggest that these two are comparable, mainly at a low or medium level of intensity.

18.
Exp Cell Res ; : 114256, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299482

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a serious cardiopulmonary disease with significant morbidity and mortality. Vascular obstruction leads to a continuous increase in pulmonary vascular resistance, vascular remodeling, and right ventricular hypertrophy and failure, which are the main pathological features of PH. Currently, the treatments for PH are very limited, so new methods are urgently needed. Msenchymal stem cells-derived exosomes have been shown to have significant therapeutic effects in PH, however, the the mechanism still very blurry. Here, we investigated the possible mechanism by which umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-EXO) inhibited monocrotaline (MCT)-induced pulmonary vascular remodeling in a rat model of PH by regulating the NF-κB/BMP signaling pathway. Our data revealed that hUC-MSC-EXO could significantly attenuate MCT-induced PH and right ventricular hypertrophy. Moreover, the protein expression level of BMPR2, BMP-4, BMP-9 and ID1 was significantly increased, but NF-κB p65, p-NF-κB-p65 and BMP antagonists Gremlin-1 was increased in vitro and vivo. Collectively, this study revealed that the mechanism of hUC-MSC-EXO attenuates pulmonary hypertension may be related to inhibition of NF-κB signaling to further activation of BMP signaling. The present study provided a promising therapeutic strategy for PH vascular remodeling.

19.
Stem Cell Res Ther ; 15(1): 315, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300579

RESUMEN

BACKGROUND: Liver fibrosis can progress to end-stage cirrhosis and liver cancer. Mesenchymal stem cells (MSCs) were considered the most promising therapeutic strategy, but most of the MSCs injected intravenously traditionally are trapped in the lungs, rapidly reducing their survival ability. MSC spheroids cultured in 3D have shown higher tolerance to fluid shear stress and better survival than dissociated MSCs. Simulating the route of orthotopic liver transplantation, transplanting MSC spheroids into the liver via hepatic portal vein may impact superior therapeutic effects. METHODS: In the present study, human umbilical cord-derived MSC spheroids (hUC-MSCsp) were transplanted into rhesus monkey models of liver fibrosis via B-ultrasound-guided percutaneous portal vein puncture with minimized body invasion. The therapeutic effect is evaluated through hematology, ultrasound, and pathology. To study the effect of hUC-MSCsp on gene expression in rhesus monkeys with liver injury, transcriptome sequencing analysis was performed on the livers of rhesus monkeys. The distribution of transplanted hUC-MSCsp was traced with RNA scope technology. RESULTS: We found that hUC-MSCsp significantly restored liver function, including ALT, AST, ALB, GLOB and bilirubin. hUC-MSCsp also significantly reduced liver collagen deposition and inflammatory infiltration, and promote dismission of liver ascites. Subsequently, the therapeutic effects were further validated in TGF-ß1/Smad pathway by global transcription profile. The distribution of transplanted hUC-MSCsp were also tracked, and we found that hUC-MSCsp distributed in the liver in a sphere status at 1 h after transplantation. After 16 days, the hUC-MSCsp were dispersed into dissociated cells that were predominantly distributed in the spleen, and a significant number of dissociated cells were still present in the liver. CONCLUSIONS: This study reveals the distributions of transplanted hUC-MSCsp after liver portal vein transplantation, and provides a novel approach and new insights into the molecular events of potential molecular events underlying the treatment of liver fibrosis with hUC-MSCsp.


Asunto(s)
Cirrosis Hepática , Macaca mulatta , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Vena Porta , Cordón Umbilical , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Cordón Umbilical/citología , Cirrosis Hepática/terapia , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Esferoides Celulares/metabolismo , Ultrasonografía/métodos , Hígado/patología , Hígado/metabolismo
20.
Stem Cell Res Ther ; 15(1): 316, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304926

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has created a global pandemic with significant morbidity and mortality. SARS-CoV-2 primarily infects the lungs and is associated with various organ complications. Therapeutic approaches to combat COVID-19, including convalescent plasma and vaccination, have been developed. However, the high mutation rate of SARS-CoV-2 and its ability to inhibit host T-cell activity pose challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (MSCs-EVs) have shown promise in COVID-19 therapy because of their immunomodulatory and regenerative properties. MicroRNAs (miRNAs) play crucial regulatory roles in various biological processes and can be manipulated for therapeutic purposes. OBJECTIVE: We aimed to investigate the role of lyophilized MSC-EVs and their microRNAs in targeting the receptors involved in SARS-CoV-2 entry into host cells as a strategy to limit infection. In silico microRNA prediction, structural predictions of the microRNA-mRNA duplex, and molecular docking with the Argonaut protein were performed. METHODS: Male Syrian hamsters infected with SARS-CoV-2 were treated with human Wharton's jelly-derived Mesenchymal Stem cell-derived lyophilized exosomes (Bioluga Company)via intraperitoneal injection, and viral shedding was assessed. The potential therapeutic effects of MSCs-EVs were measured via histopathology of lung tissues and PCR for microRNAs. RESULTS: The results revealed strong binding potential between miRNA‒mRNA duplexes and the AGO protein via molecular docking. MSCs-EVs reduced inflammation markers and normalized blood indices via the suppression of viral entry by regulating ACE2 and TMPRSS2 expression. MSCs-EVs alleviated histopathological aberrations. They improved lung histology and reduced collagen fiber deposition in infected lungs. CONCLUSION: We demonstrated that MSCs-EVs are a potential therapeutic option for treating COVID-19 by preventing viral entry into host cells.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , SARS-CoV-2 , COVID-19/terapia , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Animales , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Células Madre Mesenquimatosas/metabolismo , Humanos , Masculino , Mesocricetus , Internalización del Virus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Simulación del Acoplamiento Molecular , Simulación por Computador , Cricetinae , Trasplante de Células Madre Mesenquimatosas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...